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Abstract 

Data scarcity poses a significant challenge for training robust machine learning models in safety-critical applications like 

snow detection, where real-world data collection is often limited and seasonal. This study explores the potential of synthetic 

data sets generated by prompt-based image synthesis models to enhance machine learning applications in such data-scarce 

environments. Using OpenAI's DALL·E 3 and xAI’s Aurora, synthetic images of snowy and clear sidewalks were compared 

against a real-world data set for training image-classification models. The findings reveal that an Aurora-based model 

achieved the highest F2 scores, excelling in snow detection because of its high photorealism and contextual relevance. 

However, the real-world data set demonstrated greater accuracy in detecting clear sidewalks, resulting in fewer overall 

classification errors. These results highlight the potential of synthetic data to supplement real-world data sets, particularly in 

data-scarce domains, while also emphasizing that real-world data remains crucial for balanced classification. This research 

underscores the necessity for advancements in generative models to more effectively capture complex environmental 

conditions and improve the generalizability of AI-generated data sets for scalable and practical machine learning 

applications. 
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1. Introduction

   Since the increased popularity of generative artificial intelligence (Gen AI) started with the introduction of OpenAI’s ChatGPT-

3.5 in late November 2022 and following models like ChatGPT-4o, xAI’s Grok, Meta’s Llama, and Google’s Bard / Gemini, 

numerous fields have been largely impacted in their daily processes. These large Gen AI models have been shown to be powerful 

in creating text similar to how a human would write these (Bandi et al., 2023; Chen et al., 2023). This phenomenon resulted in a 

large increase in work productivity, as they are now widely used as productivity enhancers (Haan, 2023; Shaji George et al., 

2023; Valeriya et al., 2024) helping employees optimize and automate parts of (repetitive) processes or improving decision-

making (Dwivedi et al., 2023; Shaji George et al., 2023; Valeriya et al., 2024). The increase in accuracy that led to the rise of 

these generative artificial intelligence models can be attributed to numerous factors, such as the invention of how to train using 

parallelization with large numbers of graphics processing units (GPUs) (Atallah et al., 2023; Bandi et al., 2023; Vaswani et al., 

2017), the increase in computing power that a GPU can output within a certain timeframe (Bandi et al., 2023). The increased 

computing efficiency of the models (Bandi et al., 2023), and the increased high-quality internet data sets that could be used for 

training (Atallah et al., 2023; Bandi et al., 2023). But similar to these text generators, a surge of high-resolution image Gen AI 

models was observed in the same time frame, with models such as OpenAI’s DALL·E, xAI’s Aurora, and Google’s Imagen 

(Meng et al., 2023; Zhou et al., 2023). Showcasing an increase in image synthesis capabilities, trying to close the gap between 

generated images and real-world pictures (Bandi et al., 2023; Meng et al., 2023; Zhou et al., 2023). 

   Although applications for text-based Gen AIs are largely being developed by businesses and academia, potential applications 

for image synthesis models are opening as well. This study explores using synthetic data generated by these models to overcome 

data scarcity, which is a common issue in many domain-specific applications. If successful, this approach could be applied to 

other scenarios where data is hard to collect. For example, detecting rare events (like certain weather phenomena or accidents) 

could similarly benefit from generative data (Chang et al., 2020; Elfeki et al., 2017). When an image synthesis model can 

accurately mimic the data required to train artificial intelligence (AI) models in these data-scarce sectors, the challenges of 

imbalanced or small data sets will shrink and increase the potential of model convergence, improving its results (D.-C. Li et al., 

2017). Current state-of-the-art (SOTA) models like DALL·E and Aurora show a possibility to accurately generate images using 

textual descriptions that the generator tries to simulate with very minimal costs. It shows that if these models create images 

indistinguishable from real-world pictures, training data sets can be expanded significantly for costs far cheaper than manual 

data collection and annotation (Arif & Mahalanobis, 2021; Barbosa et al., 2018).  

   This study investigates the effectiveness of two prominent prompt-based synthetic image generators, DALL·E 3 and Aurora, 

in creating training data for a snowy sidewalk image classification task, benchmarking their performance against real-world 

images. Employing an image classification architecture from de Deijn (2024), the research evaluates three data sets: 500 real-

world images of snowy and clear sidewalks, and two synthetic data sets of 500 images each, generated by OpenAI’s DALL·E 

3 and xAI’s Aurora. The choice of DALL·E 3 and Aurora over other popular models like Midjourney or Stable Diffusion was 

deliberate: DALL·E 3 was selected for its advanced prompt fidelity and ability to generate highly realistic and consistent snowy 

and clear sidewalk scenes, while Aurora was chosen for its capacity to create diverse, contextually relevant synthetic images, 

aligning with the study’s focus on viable real-world data substitutes. The primary aim is to assess how well models trained on 

synthetic data can differentiate snow and clear sidewalks in real-world conditions compared to a model trained on real-world 

images, with all models evaluated on unseen data. We hypothesize that synthetic image generators, such as DALL·E 3 and 

Aurora, do not yet produce data sets sufficient to match the performance of real-world data in this task, while exploring the 

alternative possibility that these synthetic data sets are on par with real-world data in terms of model training objectives. This 

investigation examines the potential of synthetic data sets as practical alternatives to real-world data for training machine learning 

models, particularly in cases like snow detection, where gathering extensive real-world data sets is often impractical. 

Performance is assessed using multiple metrics, including precision, recall, accuracy, Area Under the Receiver Operating 

Characteristic Curve (ROC AUC), and the F2-score, which prioritizes recall over precision to emphasize the importance of 

detecting snow for safety-critical applications. These comprehensive metrics provide a robust basis for comparing the models’ 

performance in this context and testing the proposed hypothesis. 

   The remainder of this paper is organized as follows. Section 2 reviews related work, tracing the historical progress of generative 

AI from generative adversarial networks (GANs) to diffusion models and discussing their applications in synthetic image 

generation. Section 3 details the methods, including the data set creation process, model training, and evaluation metrics used to 

compare synthetic and real-world data. Section 4 presents the experimental results, analyzing the performance of models trained 

on DALL·E 3, Aurora, and real-world data sets, with statistical comparisons to test the hypotheses. Section 5 concludes with 
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key findings, highlighting the potential and limitations of synthetic data for snow detection. Section 6 discusses challenges 

encountered, such as prompt dependency and data set diversity, and suggests directions for future research. Appendices provide 

additional details, including confusion matrices for model performance. 

2. Related Work

   Generative artificial intelligence (Gen AI) is a concept referring to deep-learning models that can generate new-like, 

meaningful content. This content can include multiple modalities, such as text, images, audio, and video (Bandi et al., 2023; 

Feuerriegel et al., 2024). These models are designed to mimic human creativity by learning patterns and structures from large 

data sets, enabling them to create outputs that resemble real-world data or entirely imaginative constructs (Creswell et al., 2018; 

Donahue et al., 2016; Dumoulin et al., 2016; Feuerriegel et al., 2024; Goodfellow et al., 2014; Mescheder et al., 2017; 

Mirza & Osindero, 2014; Nichol & Dhariwal, 2021; Ramesh et al., 2021; Sohl-Dickstein et al., 2015; Zhou et al., 2023). 

Gen AI has seen widespread adoption in various domains, such as automated content creation, image synthesis, natural language 

processing, music composition, and video generation (Bandi et al., 2023; Zhang et al., 2023).  

   Understanding the historical progress of Gen AI is essential to appreciating its current capabilities and challenges. The 

development of key frameworks, from foundational generative adversarial networks (GANs) to more recent diffusion models, 

reveals the iterative process through which researchers have enhanced the quality, stability, and applicability of generative 

models. This historical perspective not only highlights the technical milestones achieved but also underscores the limitations that 

continue to drive innovation in this space and where we are right now. 

2.1   Historical Progress of Generative AI 

   Generative AI has been in development for multiple decades, but its significance surged with the introduction of generative 

adversarial networks (GANs) (Bandi et al., 2023; de Deijn et al., 2024; K. Wang et al., 2017), as originally proposed by 

Goodfellow et al. (2014). GANs create new synthetic data using an example training data set built of real-world or authentic 

data and minimax two-player game concepts using fully connected neural networks. This concept assumes that there are two 

components: component A, a generator block, and component B, a discriminator block. The generator block’s mission is to 

generate new data that mimics the distribution of the original real-world data, while the discriminator block tries to distinguish 

whether the data shown is from the original data set or from the generator. As each component wants its score to be as good as 

possible, it tries to outperform the other component during its training. This adversarial process should theoretically lead to a 

point in which neither component can improve its score, as the data achieves a high level of realism that the discriminator can’t 

identify synthetic data from authentic data (Creswell et al., 2018; Goodfellow et al., 2014; K. Wang et al., 2017).   

   Early implementations of GANs performed well on simple data sets such as MNIST and CIFAR-10 but struggled with 

more complex scenes due to limited understanding of image semantics and spatial relationships (Creswell et al., 2018; 

de Deijn et al., 2024; S. Wang et al., 2023). To address this, researchers incorporated latent space inference, enabling the 

generator to capture abstract representations of data. Notable examples include Adversarially Learned Inference (ALI) 

and Bidirectional GANs (BiGANs), which added encoders to transform input images into latent feature vectors, 

improving the generator’s understanding of image structure and context (Donahue et al., 2016; Dumoulin et al., 2016). 

This helped guide generation and discrimination more meaningfully than relying on noise vectors alone. 

   Despite these improvements, GANs continued to exhibit issues such as training instability and mode collapse, 

especially with high-dimensional images. To counter these limitations, researchers explored probabilistic modeling 

approaches like variational auto-encoders (VAEs), which aim to encode input data into a latent distribution rather than 

a fixed vector. VAEs optimize a loss function combining a reconstruction term (which measures how well the model can 

reconstruct the input) and a Kullback-Leibler (KL) divergence term (which ensures that the learned latent space remains 

close to a prior distribution, typically Gaussian) (Kingma & Welling, 2013). While VAEs improve training stability, 

they often yield blurry outputs due to their emphasis on reconstruction fidelity rather than adversarial realism. 

   To bridge the strengths of both models, Adversarial Variational Bayes (AVB) was introduced as a hybrid framework 

that integrates the probabilistic inference of VAEs with the generative sharpness of GANs. AVB replaces the traditional 

VAE encoder with one trained adversarially to match a posterior distribution, thereby preserving sample quality while 
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improving stability Mescheder et al. (2017). This hybrid approach reduces the tension between quality and training 

convergence and marks a key moment in Gen AI’s trajectory. This showed that integrating probabilistic reasoning into 

adversarial frameworks can lead to more robust generative models.   

   However, even these advanced models faced limitations in capturing fine-grained visual complexity and maintaining 

training stability at scale. This led to the rise of diffusion models, which offered a fundamentally different approach. 

Rather than pitting two networks against each other, diffusion models learn to gradually corrupt input data with noise 

and then reconstruct it step-by-step in reverse. The process is optimized using reconstruction loss and KL divergence 

terms similar to VAEs, but avoids adversarial training entirely. This method forms the basis for many recent high-fidelity 

image generators and sets the stage for the diffusion-based models explored in the next section (Ho et al., 2020; Nichol 

& Dhariwal, 2021).  

2.2   Diffusion Models 

   A diffusion model often uses UNet UBlocks (Ho et al., 2020; Saharia et al., 2022), ResNet blocks (Nichol & Dhariwal, 

2021), as well as down sample and attention blocks such as self-attention (Ho et al., 2020; Saharia et al., 2022), multi-

head attention (Nichol & Dhariwal, 2021), or cross attention (Saharia et al., 2022) to forward diffuse images with noise. 

To reverse diffuse, a model uses a combination of up sample blocks, skip connections to retain information across layers, 

and more attention blocks. By applying attention to multiple depths, such as 64x64, 32x32, 16x16, and 8x8, the model 

can better understand spatial relationships in early layers while recognizing global structures on deeper layers (Ho et al., 

2020; Nichol & Dhariwal, 2021; Saharia et al., 2022).  

   Shortly after the introduction of ChatGPT by OpenAI in 2022, large language model (LLM) applications became 

popular and found their way into diffusion models (Saharia et al., 2022; Zhang et al., 2023). LLMs showed that models 

can mimic real-life conversations, with near-accurate responses to questions and comments from users. As a result of 

the transformative research on LLMs such as GPT (Radford et al., 2018), BERT (Devlin et al., 2018), and T5 (Raffel et 

al., 2020), large text-to-image synthesis models were developed that utilized LLMs to create images (Ramesh et al., 

2021; Saharia et al., 2022; Zhang et al., 2023). These diffusion models take a textual prompt and transform it into vector 

embeddings through pre-trained embedders such as Contrastive Language-Image Pre-Training (CLIP). Adding these 

text embedders allows the diffusion model to create images for many classes, as the text informs the model during both 

the forward and reverse diffusion sections on what it tries to create (Radford et al., 2021; Ramesh et al., 2022; Saharia 

et al., 2022). Using large data sets of web-scraped data with both images and image descriptions, large diffusion models, 

such as Imagen (Saharia et al., 2022), Stable Diffusion (Rombach et al., 2021), and DALL·E (Ramesh et al., 2021) were 

created with the ability to handle both high-end input prompts and to create high-quality photorealistic images within 

seconds (Ramesh et al., 2021, 2022; Saharia et al., 2022).  

   However, current research shows that a lot of current generations are more likely to look like artwork instead of real-

world images (Hao et al., 2023; Hossain et al., 2024; Zhang et al., 2023). This is related to the limited availability of 

realistic annotated data sets and the constraints of model sizes. Additionally, image quality is further influenced by 

prompt engineering, a process of crafting input text to optimize the output of generative AI models, as well as by model 

architecture, fine-tuning processes, and prompt formulation (Zhang et al., 2023). Because of the way textual embeddings 

are integrated into the models’ architecture, text-to-image models are directly dependent on the quality of the input 

prompt to generate better results. With well-engineered prompts, a model can emulate real-world situations, possibly 

even functioning as an emulator for real-world training data in scarce domains. But the opposite is true as well; if a 

prompt is not well-defined and of low quality, results can be nothing like the desired training set (Hao et al., 2023; Zhou 

et al., 2023). Next to that, there is also a risk that the model would like the prompt to be received in a certain way and 

performs worse when it sees a word that it has not been trained on. This creates different challenges, as it is often hard 

to know which words a model prefers to see and which words receive preferred results for the user (Hao et al., 2023; 

Zhang et al., 2023). For this reason, approaches such as Diffusion Inversion (Zhou et al., 2023) or prompt adaptation 

frameworks (Hao et al., 2023) are proposed to overcome these challenges. These considerations emphasize the 

importance of addressing prompt dependency and data set limitations to advance the generation of more realistic and 

contextually accurate AI outputs, setting the stage for further exploration in this study. 
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   Although diffusion models have become the dominant architecture for high-resolution and prompt-driven image 

generation due to their stability and effective noise-based reconstruction, they are not the only approach shaping the field 

of generative modeling. Another important category, autoregressive models, is more upcoming and have shown strong 

performance by generating images in a sequential manner, predicting one pixel or image patch at a time based on prior 

context. This approach differs fundamentally from the denoising process used in diffusion models, emphasizing local 

coherence and detail through ordered prediction. While often more computationally intensive, autoregressive models 

excel in structured generation tasks, particularly when combined with language modeling techniques. The next section 

introduces these models and examines their role in advancing the realism and utility of synthetic image generation. 

2.3   Autoregressive Models 

   Autoregressive (AR) models represent distinctive approaches to generative modeling, diverging fundamentally from 

adversarial and diffusion-based methods. Unlike diffusion models, which iteratively refine noisy data, or generative 

adversarial networks (GANs) that pit a generator against a discriminator to learn image distributions, AR models generate 

images sequentially. They model the conditional probability of each pixel or image patch based on all previously 

generated content. This sequential process ensures that each step is informed by prior steps, fostering strong local 

coherence and enabling highly structured outputs (Gu et al., 2025). The autoregressive framework excels at capturing 

intricate dependencies within an image, making it particularly effective for generating detailed and contextually 

consistent visuals. However, this approach has historically faced challenges, including slow generation speeds and 

difficulties in modeling both local textures and global structures simultaneously, which have limited its scalability for 

high-resolution image synthesis (Gu et al., 2025). 

   Recent advancements have significantly mitigated these limitations, pushing AR models toward greater efficiency and 

quality. One notable innovation is the Multi-scale Vector-Autoregressive (M-VAR) framework, which introduces scale-

separated modeling to decompose image generation into intra-scale and inter-scale processes (Ren et al., 2024). Intra-

scale modeling focuses on capturing fine-grained details within a given resolution, while inter-scale modeling addresses 

long-range dependencies across different resolutions. This decomposition allows M-VAR to efficiently model complex 

global structures without sacrificing high-fidelity textures, resulting in substantial performance improvements on large-

scale benchmarks like ImageNet-256. By enabling faster and more robust generation, M-VAR demonstrates the potential 

of AR models to compete with diffusion-based methods in high-resolution image synthesis, particularly for applications 

requiring both local precision and global coherence (Ren et al., 2024). 

   In addition to improvements in generation speed and flexibility, AR models have evolved to support continuous data 

representations, moving beyond the limitations of vector-quantized image tokens. Traditional token-based approaches 

often introduce quantization artifacts, which can degrade image quality, especially for high-resolution outputs. The 

Multimodal Autoregressive (MAR) model addresses this by operating in continuous latent spaces and applying 

autoregressive loss functions informed by diffusion-based likelihoods (T. Li et al., 2024). This integration reduces 

tokenization overhead while preserving the sequential modeling benefits of AR frameworks, resulting in sharper and 

more natural images. By leveraging continuous representations, MAR achieves a balance between computational 

efficiency and visual fidelity, making it a compelling choice for applications where artifact-free generation is critical. 

   Moreover, advances in multimodal alignment have enhanced the reasoning capabilities of AR models, enabling them 

to generate images that align closely with complex input prompts. Techniques such as chain-of-thought prompting and 

preference alignment allow models to perform stepwise reasoning during generation, improving both the interpretability 

and accuracy of outputs (Guo et al., 2025). For instance, when conditioned on detailed textual descriptions, these models 

can produce images that reflect nuanced semantic relationships, such as specific object placements or environmental 

conditions. This capability is particularly advantageous for tasks requiring precise control over generated content, as it 

allows AR models to translate abstract instructions into visually coherent results. Such advancements underscore the 

potential of AR models to bridge the gap between generative modeling and structured reasoning (Guo et al., 2025). 

   In the context of synthetic image generation for data-scarce domains like snow detection, AR models offer unique 

advantages. Their ability to produce highly structured, prompt-conditioned images makes them well-suited for creating 

synthetic data sets that capture realistic spatial relationships and environmental features, such as snow accumulation 

patterns or terrain variations. Unlike diffusion models, which often prioritize raw image fidelity, AR models perform 
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well in controllability and semantic precision, enabling them to generate images tailored to specific requirements. While 

diffusion models remain dominant in applications demanding photorealistic outputs, the structured visual understanding 

offered by AR models provides a powerful alternative. 

3. Methods

   Annually, tens of thousands of people end up at the emergency department as a result of winter-related fall and slip 

injuries, mostly among seniors and the visually impaired. These fall and slip injuries are weather-related, such as snow 

and ice on sidewalks, which are challenging to detect and are very slippery (Kakara et al., 2021; Mills et al., 2020). 

Solutions using artificial intelligence, such as image classification networks, might help these demographics to promptly 

recognize and avoid dangerous spots with timely alerts. These networks can be trained on sidewalk images with snow 

and ice, and be deployed to mobile phones and/or other wearables (de Deijn, 2024; de Deijn & Bukralia, 2024) but 

require large quantities of data to achieve high accuracy (de Deijn, 2024; Lecun et al., 2015). This might be one of the 

bigger challenges for sidewalk snow and ice detection, as these images are not as commonly available on the internet 

and are season-dependent to collect (de Deijn, 2024; de Deijn & Bukralia, 2024). Next to that, snow and ice have very 

unique optical characteristics, meaning that light reflection depends on a large number of factors such as lighting type, 

snow depth, environmental conditions (de Deijn, 2024; Warren, 2019), snow grain size (Dang et al., 2016; de Deijn, 

2024; Zhuravleva & Kokhanovsky, 2011), light brightness, and solar zenith angle (Dang et al., 2016; de Deijn, 2024) to 

name a few. Synthetic data could offer a solution, as it enables researchers to generate new training data cheaply 

throughout the year. It has the potential to simulate all types of different environments under different reflection 

conditions. For synthetic data to be used as training data for a snow detection network in the real-world, photorealistic 

images are necessary. For this reason, a model is required to simulate the real-world, rather than creating cartoon-like 

images (Hossain et al., 2024).  

   This paper compares two prompt-based synthetic image generators: OpenAI’s DALL·E 3, which is a diffusion-based 

image generator, and xAI’s Aurora, which is an autoregression-based image generator. For the comparison, each model 

was used to generate 250 images of snowy sidewalks using the following prompt: 

 Generate a realistic winter scene from a first-person pedestrian perspective looking down at a 

cracked concrete sidewalk. The sidewalk is partially covered with icy, slushy snow, concentrated 

along the edge where snow transitions into ice. Footprints are visible in the icy patches. The left 

side of the image shows accumulated snow with small patches of brown grass peeking through. 

The lighting is natural, with soft daylight, capturing the texture of the snow, ice, and sidewalk in 

a cold, wintry outdoor setting.  

   Similarly, another 250 images of clear sidewalks were generated by each model using this prompt: 

Generate a realistic outdoor scene from a pedestrian’s perspective looking down at a clean, 

cracked concrete sidewalk on a clear day. The sidewalk is bordered by a patch of dry grass and a 

landscaped area with mulch, dormant shrubs, and a large rock. Pink stakes are visible marking 

parts of the landscaped area. The lighting is natural and sunny, casting soft shadows and 

highlighting the textures of the sidewalk, grass, and surroundings. The scene captures a calm, 

real-world outdoor setting without including any visible objects like a smartphone. 

   These prompts were designed by OpenAI’s ChatGPT-4o after analyzing some example real-world sidewalk images, 

as shown in Figure 1, from a data set created by de Deijn & Bukralia (2024).  
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Figure 1. Examples of Real-World Snowy Sidewalk Data Set By de Deijn & Bukralia (2024), Used By ChatGPT-

4o to Generate Image Generation Prompts 

   To evaluate the generated images, as shown in Figure 2, we trained models using the snowy sidewalk image 

classification architecture proposed by de Deijn (2024). This convolutional neural network (CNN) incorporates a spatial 

attention mechanism with combined average and max pooling. We configured the model with a learning rate of 0.001, a 

batch size of 4, and trained it for 25 epochs due to the limited data set size. The Adam optimizer and cross-entropy loss 

function were employed. Images were resized to 224 × 224 pixels, with data augmentation including random rotations 

of up to 90 degrees and random horizontal flips. By training a model on each synthetic data set, we assessed their 

performance against real-world data. The evaluation was conducted using a separate, unseen real-world test data set to 

ensure unbiased comparison. 

(a) (b) 

Figure 2. Examples of the Synthetic Images Created Using (a) DALL·E 3 and (b) Aurora 

   Additionally, another model was trained on different real-world data of snowy and clear sidewalks, comprising 250 

images per category as well. All models were evaluated using a test data set that contains 59 images per category. Despite 

its small size, this data set provides an effective means of evaluating the performance of the synthetic data. Model 

performance is compared using the F2 score, which prioritizes recall over precision, highlighting accurate snow detection 

over clear sidewalk detection, as snow has a higher hazard level for pedestrian safety when not correctly identified as 

compared to clear sidewalks. 

4. Experiment Results

   Three similar networks, built on de Deijn’s (2024) architecture, were trained using three distinct data sets: synthetic 

data sets from DALL·E 3 and Aurora, and a real-world training data set created for this study. Each model underwent 

twelve prediction rounds, with the real-world test data set randomly split into batches to mitigate variability from its 

limited size. Performance was assessed on an unseen real-world test data set using key metrics: recall (proportion of true 
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snow instances detected), precision (accuracy of snow predictions), F2 score (emphasizing recall over precision to 

prioritize snow detection while considering clear sidewalk accuracy), accuracy (overall correct predictions), and ROC 

AUC (ability to distinguish snow from clear sidewalks). To measure statistical significance and the magnitude of 

performance differences, p-values (with p < 0.05 indicating significance) and Cohen’s d (standardized effect size, where 

positive values favor the synthetic model and negative values favor the real-world model) were calculated relative to the 

real-world model’s test results. The results of these tests are presented in Table 1. 

Metric Model Mean (± Std) 
P-value (vs.

Real-World)

Cohen's d (vs. 

Real-World) 
Interpretation 

F2 score DALL·E 3 82.49% (±0.80) 5.8871 × 10-11 -7.4000
Significantly 

Worse 

Aurora 94.40% (±0.23) 6.6502 × 10-10 5.9085 
Significantly 

Better 

Real-World 89.53% (±0.91) - - - 

Precision DALL·E 3 62.73% (±1.21) 1.8152 × 10-15 -19.1604
Significantly 

Worse 

Aurora 77.13% (±0.77) 1.3991 × 10-14 -15.9049
Significantly 

Worse 

Real-World 94.28% (±0.59) - - - 

Recall DALL·E 3 89.55% (±0.94) 0.0128 0.8944 
Significantly 

Better 

Aurora 100.00% (±0.00) 2.3771 × 10-12 9.9440 
Significantly 

Better 

Real-World 88.42% (±1.16) - - - 

Accuracy DALL·E 3 68.15% (±1.40) 1.5834 × 10-14 -15.7263
Significantly 

Worse 

Aurora 85.17% (±0.65) 2.7259 × 10-12 -9.8198
Significantly 

Worse 

Real-World 91.53% (±0.51) - - - 

ROC AUC DALL·E 3 67.52% (±0.68) 9.7188 × 10-21 -57.8231
Significantly 

Worse 

Aurora 95.54% (±0.59) 2.0715 × 10-9 -5.3125
Significantly 

Worse 

Real-World 98.09% (±0.22) - - - 

Table 1. Statistical Comparison of Models Trained on DALL·E 3, Aurora, and Real-World Data Across 

Twelve Test Runs. Means and standard deviations (± Std) are reported, with p-values and Cohen’s d 

calculated relative to the Real-World model. A p-value < 0.05 indicates statistical significance, and Cohen’s d 

reflects effect size (positive = better than Real-World, negative = worse). 

   Table 1 shows that the Aurora-trained model achieved the highest F2 score (94.40%) and perfect recall (100%), with 

t-test p-values of p = 6.65 × 10⁻¹⁰ and p = 2.38 × 10⁻¹², respectively, confirming its mean scores significantly surpass the

real-world model (F2: 89.53%, recall: 88.42%). To complement statistical significance, we also report Cohen’s d, a

standardized effect size that quantifies the magnitude of differences across twelve independent runs, showing very large

positive values (F2: d = 5.91; recall: d = 9.94), which underscores Aurora’s pronounced advantage in snow detection.

This performance likely stems from Aurora’s ability to generate highly photorealistic images that closely mimic real-

world variability. Conversely, the real-world model led in precision (94.28%), accuracy (91.53%), and ROC AUC

(98.09%), with synthetic-data models showing significantly lower means and large negative effect sizes (e.g., Aurora

precision: p = 1.40 × 10⁻¹⁴, d = –15.90; DALL·E 3 precision: p = 1.82 × 10⁻¹⁵, d = –19.16). DALL·E 3 trailed across
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most metrics (e.g., F2: 82.49%; p = 5.89 × 10⁻¹¹, d = –7.40), likely due to less realistic image detail as verified by visual 

data set analysis. 

   Surprisingly, the real-world model did not outperform synthetic models in all areas, an observation reflected not only 

in p-values but also in moderate to large Cohen’s d values that highlight substantial performance gaps. Confusion 

matrices (see Appendix) reveal Aurora’s model perfectly identifies snow (recall: p = 2.38 × 10⁻¹², d = 9.94) but 

occasionally misclassifies clear sidewalks, while the real-world model balances both classes with fewer errors. The F2 

score’s recall bias enhances Aurora’s edge (F2: p = 6.65 × 10⁻¹⁰, d = 5.91), with effect sizes confirming its superior snow 

detection. DALL·E 3’s consistent underperformance (for example, ROC AUC: p = 9.72 × 10⁻²¹, d = –57.82) suggests it 

struggles with photorealistic detail critical for this task. 

   The test data set’s small size (59 images per category) and limited variability (e.g., lighting, snow texture) may have 

impacted results. A larger, more diverse test set could improve generalizability. Aurora’s stable performance, with 

significant mean differences (p < 0.05), highlights the value of high-quality synthetic data for applications like pedestrian 

safety, while DALL·E 3’s significant gaps indicate areas for refinement. 

5. Conclusion

   This study highlights the transformative potential and current limitations of generative AI in creating synthetic data 

sets for snow detection. By comparing models trained on real-world data with those trained on synthetic data sets from 

DALL·E 3 and Aurora, the results reveal significant performance differences, as confirmed by t-test p-values (p < 0.05), 

showing that mean metric scores for synthetic models diverge markedly from the real-world model. Aurora’s data set 

achieved the highest F2 score (94.40%, p = 6.65 × 10⁻¹⁰) and perfect recall (100%, p = 2.38 × 10⁻¹²) versus the real-world 

model (F2: 89.53%; recall: 88.42%), driven by its ability to catch every snow patch, as F2 weights recall more heavily. 

However, Aurora’s lower precision (77.13%, p = 1.3991 × 10-14) due to higher false positives indicates it is less effective 

at distinguishing snow from clear sidewalks compared to the real-world model. In contrast, DALL·E 3’s lower F2 score 

(82.49%, p = 5.89 × 10⁻¹¹), ROC AUC (67.52%, p = 9.7188 × 10-21), and accuracy (68.15%, p = 1.5834 × 10-14) highlight 

its struggles with capturing real-world variability in snow appearance, making it unreliable as a standalone data source 

for this task. 

   The real-world model, despite a lower F2 score and recall, outperforms or matches both synthetic-data models across 

all metrics (F2, precision, recall, accuracy ROC AUC) when considering both false positives and false negatives, 

achieving higher precision (94.28%) and accuracy (91.53%). This balanced performance suggests that evaluation metrics 

and data set diversity are critical for assessing generalization. The test data set’s small size (59 images per category) may 

exaggerate synthetic data’s apparent superiority, emphasizing the need for larger, more varied data sets to validate these 

findings. 

   While generative AI has made remarkable strides, it is not yet a full substitute for real-world data. Aurora’s success 

suggests that synthetic data sets can effectively complement traditional data, particularly for tasks like snow detection, 

where real-world collection is challenging. However, DALL·E 3’s significant performance gap indicates that further 

refinements are needed. Future research should prioritize enhancing generative models to capture environmental 

complexities, potentially through physics-based lighting models, increased scenario variability, or advanced prompt 

engineering, to produce synthetic data sets that meet the demands of robust machine learning applications. 

   Ultimately, this study underscores that generative AI is narrowing the gap with real-world data. The significant 

differences in performance, backed by t-test results, point to a future where synthetic data, as exemplified by Aurora, 

can augment real-world data sets, enabling scalable, effective solutions for machine learning tasks like pedestrian safety. 

6. Discussion

   This study faced several challenges that influenced its results. One of the primary limitations lies in the dependency of 

synthetic image generation models on the quality and precision of the prompts provided by the researcher or user. Poorly 

constructed prompts can negatively impact the quality and photorealism of the generated images. This issue was highly 

present in this study, as pictures produced by OpenAI’s DALL·E were not as photorealistic as those generated by xAI’s 

Aurora, despite both data sets being created using identical prompts. The two prompts were generated by ChatGPT based 

on some example images, with the thought that this would return the most optimally engineered prompt for the model, 

but this did not optimally deliver for DALL·E. This underscores the importance of the model architecture, the underlying 
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data used for training, and the quality of prompts in determining the quality and relevance of generated images. 

   Additionally, while synthetic data sets addressed data scarcity, they still could face challenges in generalizing real-

world scenarios. The constrained nature of prompts and the uniformity of generated data sets can lead to overfitting, 

where models perform well on test sets with similar characteristics but struggle with diverse or unforeseen real-world 

conditions. This highlights a key limitation of synthetic data: its ability to replicate specific scenarios but not the 

variability and complexity of real-world environments. For instance, while Aurora generated more realistic images, the 

synthetic data sets lacked diversity in surface textures, lighting conditions, and environmental contexts, such as the 

appearance of other white objects that you might see outside, such as chalk, paint, or dandelion puffs, which pose critical 

factors for robust snow detection models. A solution would be to expand the data set with more variable data or to apply 

domain adaptation by training a model on synthetic images and fine-tuning it on real images. This would reduce the need 

for large data sets of real-world data. 

   Google’s Imagen3 model was also evaluated using the prompts. While it successfully generated images for the snow-

covered sidewalk prompt, it failed to produce images for the clear pavement prompt, citing policy restrictions. 

Consequently, this limitation prevented Imagen3 from being included in the comparative analysis. Visually, the snow 

images generated by Imagen3 appeared more realistic than those from DALL·E but less so than Aurora. However, 

because of its inability to generate a complete data set under identical conditions, a formal evaluation of Imagen3’s 

performance could not be conducted in this study.  

   Future research should address these limitations by focusing on improving both the diversity and quality of synthetic 

data sets. Refining prompt engineering techniques and developing frameworks that automate prompt optimization could 

reduce the reliance on user expertise, making synthetic data generation more accessible and reliable. Furthermore, as AI-

generated images become increasingly indistinguishable from real-world data, it is important to think about mechanisms 

such as permanent watermarks on AI-produced images. These identifiers would ensure transparency of synthetic data 

usage, mitigating risks associated with misuse or misrepresentation. Such watermarks must be robust and impervious to 

tampering, striking a balance between maintaining the utility of the data for machine learning applications and addressing 

ethical concerns around authenticity.  
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Appendix 

Appendix I. Model Confusion Matrices 

Appendix I Fig. 1. DALL·E 3 Test Data Confusion Matrices 
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Appendix I Fig. 2. Aurora Test Data Confusion Matrices 
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Appendix I Fig. 3. Real-World Test Data Confusion Matrices 
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