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Abstract 

Real estate managers must identify the value for properties in their current market.  Traditionally, this involved simple data 

analysis with adjustments made based on manager’s experience.  Given the amount of money currently involved in these 

decisions, and the complexity and speed at which valuation decisions must be made, machine learning technologies provide 

a newer alternative for property valuation that could improve upon traditional methods.  This study utilizes a systematic 

literature review methodology to identify published studies from the past two decades where specific machine learning 

technologies have been applied to the property valuation task.  We develop a data, reasoning, usefulness (DRU) framework 

that provides a set of theoretical and practice-based criteria for a multi-faceted performance assessment for each system. 

This assessment provides the basis for identifying the current state of research in this domain as well as theoretical and 

practical implications and directions for future research. 
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1. Introduction

   Real estate is a major component of the global economy.  The correct valuation of real estate plays a key role in the 

economy and is crucial for active market participants who are buying, selling and developing property, as well as property 

and non-property owners not actively engaged in the market.  Governments use valuation techniques to determine 

property taxes which generate revenue for roads, schools and other government projects.  Rental rates for non-property 

owners depend upon property valuation. Capital markets use valuations to determine collateral for both commercial and 

residential lending. Finally, activity in the real estate market creates employment for construction workers, income for 

retailers, and opportunities for service providers.  The correct valuation of property is a crucial component of the complex 

web of economic activity linked to the real estate markets.  The traditional valuation approach tasks market participants 

with collecting a wide range of data on both the characteristics of the property to be valued and comparable properties 

in close proximity.  The goal is to then develop a system to understand the relative importance of the different inputs in 

relation to the specific property under consideration and arrive at an estimate of the property’s value. Individual property 

appraisals often combine a variety of mathematical tools with a subjective adjustment of the mathematical results. This 

approach can be flawed because it has the potential for wide variation in estimated values and is at least partially 

dependent upon the experience, knowledge, and skill of a human appraiser. 

   Advances in technology have allowed for utilizing a wider variety of information and incorporating increasingly 

sophisticated analysis of the data.  These advances have improved the ability to perform mass appraisals that evaluate 

groups of properties utilizing standardized methods and data.  Mass appraisal is often utilized to inform the setting of 

property taxes and also in development planning.  These same techniques may also be used as a starting point for 

individual valuations performed by market participants buying, selling and managing real estate.  It is a common adage 

in real estate that the three most important determinants of price are location, location and location. The preferences for 

different property characteristics differ across locations making adjustments for local preferences a key component of 

property valuation. This has traditionally limited the applicability of mass appraisal as the sole valuation technique. 

Large data sets and traditional statistical methods have trouble accounting for locational differences limiting the 

effectiveness of many mass appraisal techniques.  

   In many domains, decision-makers have turned to machine learning (ML) technologies that have the potential to 

improve upon existing decision processes because they can quickly analyze a vast amount of timely data with a wide 

range of problem features.  The task of real estate valuation appears to provide an excellent opportunity for improvements 

through the adoption of machine learning applications because of the large number of potential inputs and the nonlinear 

nature of the relationships between the variables.  In other words, machine learning technology appears to fit the task of 

property valuation (Goodhue & Thompson, 1995). The utilization of machine learning techniques has expanded in many 

fields in the past decades as computing power has increased along with the availability of massive amounts of easily 

accessible and timely data. 

   The interaction between the appropriateness or fit of a technology to perform a task and the adoption of the technology 

has been the subject of a large volume of academic research (see Spies, Grobbelaar, and Boths (2020), Furneaux (2012) 

and Marangunić and Granić (2015)).  This paper combines a systematic review of the use of machine learning technology 

in property valuation over the last two decades with a critical evaluation of the progress made aligning the fit of the 

technology to the property valuation task in a manner that supports its adoption.  This provides the basis for answering 

several related questions. First, it enables us to see which machine learning technologies have been applied to this task 

and what improvements they have made when compared with alternative methods.  Second, the review provides the basis 

for an analysis of which specific machine learning techniques (for example, artificial neural networks, genetic algorithms, 

etc.) show the most promise for improving property valuation or which technology best fits this task. Finally, the review 

provides insight into whether the academic literature addresses the correct elements of the task to promote successful 

adoption of the technology by real estate professionals. Investigating this question may also shed light on directions for 

future research and the path to adoption of machine learning in other finance-related decision domains.  

   In the following sections we discuss several traditional property valuation methods to provide the background for this 

study.  We then identify both theoretical and practical criteria for evaluating the performance of machine learning 

property valuation techniques, describe the systematic literature review methodology used in this study, and discuss the 

findings from our review of each of the identified published studies.  We conclude with a discussion of overall findings, 

related managerial and theoretical implications, and directions for future research that could extend our current 

knowledge in the domain of machine learning technology-based property valuation. 
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2. Introduction to Property Valuation

   The value of real estate incorporates a wide range of variables including property characteristics, geographic amenities, 

market conditions, and preferences of market participants. Given the wide range of potential variables and the endless 

permutations that are possible, the process of valuation involves an understanding of the relative importance of the 

different variables and their respective impact on the value of a property.  A common element included in the valuation 

is often comparing properties with similar identifying characteristics within close proximity and incorporating data on 

those properties to the one being considered. Without a formal quantitative methodology, the task of property valuation 

would be dependent solely upon the subjective ability of the person performing the valuation to determine the correct 

variables to consider and their impact on the final property value.  The importance of each variable will vary based upon 

location, potential use of the property, availability of properties with similar characteristics in the market, preferences of 

potential buyers, the economic environment and a range of other variables.  The desire to develop more formal 

quantitative techniques providing more objectivity in estimating the market value of a property has produced an extensive 

academic literature and range of related professional practices. 

   There are three broad approaches to property valuation: the sales comparison approach, income approach, and cost 

approach.  The sales comparison approach focuses on comparing the attributes of a property under consideration to 

similar properties that have recently sold in the local real estate market.  The standard comparable model is intuitively 

appealing when considering residential properties where characteristics such as number of bedrooms, number of 

bathrooms, lot size, total square footage, etc. are common points of comparison for potential buyers. This framework 

also aligns well with the hedonic regressions described by Rosen (1974).  Each potential individual purchaser places 

different weights on each identifiable characteristic.  For example, one buyer might place the most emphasis on the 

number of bedrooms, while a different purchaser may place the most emphasis the presence of a garage. While there are 

individual differences across buyers, common themes emerge such as a larger number of bedrooms generally increases 

the value of a home.  Commercial properties also include many points of comparison allowing for a similar approach.  

However, with commercial properties there are often additional considerations related to the income generated from the 

property which are not applicable to the owner-occupied residential market.   

   When evaluating commercial property, the income approach is often used. The income approach requires an estimate 

of the present value of the future cash flow generated by the property.  Participants evaluate the potential future earnings 

that could be generated from the property, including evaluating profits from rental income, incomes from industrial use, 

and/or the value added to the property through the development process. Residential properties purchased as investment 

vehicles providing rental income would be included in this area.  Valuation methods focusing on the income approach 

expand upon basic comparable approaches to include modelling of the property as a revenue generating asset.   

   The cost approach is the third traditional approach to property valuation.  The cost approach starts with the value of 

the land then adds the cost of building a new similar structure minus depreciation. This works well for relatively new 

construction and relies upon a comparison approach for the initial land value portion of the calculation before 

incorporating construction costs.    

   The three broad types of comparable approaches are intuitively appealing when considering the value of an individual 

property since they incorporate varying preferences of market participants and also the location of the property. 

However, there is a strong need for a methodology that has wider application and can help produce consistent objective 

valuations across properties to aid in appraisals.  This is highlighted by Epley (2017) who focuses on the need for 

consistent terminology and characterization of the output produced by computer assisted automated valuation methods 

(AVM). One key point made is that many models in the academic literature do not contain reference to important 

requirements of the appraisal process required by the Uniform Standards of Professional Appraisal Practice (USPAP), 

which includes a definition of market value. Epley (2017) points to parts of the appraisal process missing in most AVM 

techniques, such as the requirement for an inspection. These differences are also discussed in the IAAO AVM standards. 

The standard recommends that the user review the values produced by AVMs that are based on traditional appraisal 

approaches (Epley, 2017). He also points to identified differences in AVM methodologies across countries, and a lack 

of transparency in the techniques utilized by some commercially available AVMs due to patent filings. Ultimately Epley 

(2017) points to the output from the AVM as being mislabeled and not a true market value of the property, but instead a 

starting point to aid in the determination of a market value. A clearer understanding of the methodology utilized in the 

ability of different machine learning approaches to property valuation will help bridge the potential gaps between the 

academic literature end user, an understanding necessary to evaluate the alignment of ML techniques with the task of 
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aiding in property valuation. 

   Attempting to capture the intuition underlying individual property evaluation for a group of properties has long been a 

goal in the literature. The use of hedonic regressions to estimate house prices was first attempted by Rosen (1974) while 

discussing price setting for differentiated products that can be classified by a set of observable characteristics and prices. 

The application of standard computational methods and more advanced statistical methods such as multiple variable 

regression and stepwise regressions were the focus of much of the early literature on property valuation.  Pagourtzi, et 

al. (2003) termed these approaches traditional valuation techniques and classified a second set of techniques, many 

utilizing machine learning, as advanced valuation methods.   They classify traditional valuation techniques as those that 

develop a function of observable property characteristics to produce a valuation.  Ultimately, the traditional methods 

assume a deterministic relationship between the independent variables used as points of comparison across projects, 

similar to the hedonic regressions suggested by Rosen (1974).  Thus, given a set of property characteristics, a price can 

be determined by incorporating the implied importance of each characteristic from the representative sample.  However, 

this is a poor representation of the actual pricing process which includes very localized changes in the relative importance 

of each variable.   Additionally, there are possibly variables and relationships which are not directly observable which 

influence the value of a property.   

   Advanced techniques are those that attempt to capture the thought process of market participants and incorporate 

inferences about relationships and/or variables which are not easily observable or quantified by the traditional models. 

Basic examples include consumer perception of construction quality, age of the house, importance of proximity to 

different types of infrastructure, changes in consumer wealth and consumer perceptions of the future economic 

environment.  Riddel (1999) first discussed how changes in local perceptions can be the product of relying on past price 

changes creating a localized feedback loop.  Similarly, changes in localized future market expectations can create a 

speculative bias that influences prices. The impact of, and relationship among, both the observable and hidden variables 

will vary greatly by the location of the property.  Rico-Juan and Taltavull de Laz Pav (2021) reference these influences 

as creating non linearities in the data and can result in spatial autocorrelation in local house prices.   

   The advanced models described by Pagourtzi et al. (2003) included various machine learning systems such as artificial 

neural networks (ANNs) and also other approaches such as fuzzy logic, spatial analysis models, and autoregressive 

integrated moving average (ARIMA) techniques.  The common theme underlying these techniques is that they have the 

potential to model more complex, nonlinear, and sometimes hidden relationships that exist between the underlying 

property characteristics. While early attempts to utilize advanced valuation techniques had been attempted at the time of 

their classification there has been large advancements in machine learning approaches over the last twenty years which 

are the focus of this study.   

3. Identifying Machine Learning Property Valuation System Performance Criteria

   The performance of a machine learning property valuation system cannot be evaluated solely based on its output. Or 

stated another way, how accurately it identifies a property value.  Consideration must also be given to the alignment of 

the technology with the task, the replicability of the results, and the quality of the data.  The validity of a machine learning 

property valuation system should include consideration of the inputs used, the process for its selection and use, and its 

output. In other words, are the newer machine learning approaches perceived by users as useful and easy to use, and do 

they effectively model the problems in this domain by matching the technology to the task?  In addition, from a real-

world practice perspective, do these systems require input data that is readily available, can they explain the process used 

to produce their valuation results, and do they follow real estate industry appraisal principles?  In this section we identify 

an overall set of theory-based and practice-based property valuation system evaluation criteria that are related to the 

questions listed above. 

   Worzala, Lenk, & Silva (1995) provided an early exploration into the application of neural networks to real estate 

valuation and ultimately questioned its usefulness. Their work provides an interesting starting point for an analysis of 

the adoption of machine learning in real estate valuation. Using a dataset of 288 single-family residential properties in 

Fort Collins, CO, the authors compared two different ANN software packages (@Brain from Talon Development Corp. 

and NeurShell from Ward Systems Group) to a multiple regression approach. The authors ran multiple trials for each 

software package to determine the optimal number of hidden layers in the model and the optimal number of nodes in 

each hidden layer.  This process resulted in computation times for each model ranging from 30 seconds to forty-five 

hours.  The  neural network approaches made a slight improvement upon a multiple regression approach in  some cases  
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but with many caveats.  Sometimes when one software package would outperform the multiple regression model, the 

other often did not and which package was superior depended upon the sample.  They also found that the packages 

produced internally inconsistent results when reran with the same number of hidden layers and nodes since they assign 

random weights at the beginning of the training for each node.  In contrast, the multiple regression models would be 

expected to produce identical results regardless of software given the same parameters.  The problems of proper model 

specification, parameterization, differing results with multiple applications of the same models, and inconsistent 

measurement error potentially extends to many machine learning techniques.   

   Inconsistency in the ability of technology to improve performance of a task plays a key role in inhibiting its adoption. 

This points to the first theory-based set of evaluation criteria.  The Technology Acceptance Model (TAM) explores how 

both the perceived usefulness of a technology and its perceived ease of use impact the intention to adopt the technology 

(Davis, 1989). The model demonstrates that factors measuring usefulness such as improved quality of work, effectiveness 

of outcomes, and increased productivity have a large influence on an end user’s intention to adopt the technology.  The 

model combines the importance of usefulness with ease of use which revolves around factors such as the complexity of 

the technology and the time taken to become skillful in its use.   

   A second theoretical perspective on system performance evaluation is identified in the early work by Goodhue and 

Thompson (1995).  They developed the Task Technology Fit (TTF) model which focuses on the alignment between the 

technology and the task it purports to improve.  Their model shows that the end user’s perceived benefit derived from 

adoption of a technology is influenced not only by the factors present in the TAM model, but also by the users’ evaluation 

of the fit between the task and technology.   Goodhue and Thompson (1995) identify eight factors influencing the 

evaluation of task technology fit. Four of the factors focus on elements related to the quality, availability, accessibility, 

and compatibility of the data.  The other four factors relate to the technology being used.  These factors include ease of 

use, the reliability of the technology, the timeliness of the output, and the ability for the technology to improve 

performance.  Their eight factors align with and include some elements identified by TAM and emphasize the additional 

impact of the appropriateness of the technology. TTF concludes that performance improvement only occurs if user’s 

attitudes allow it to be utilized and there is also a good fit between the technology and the task it is addressing.   

   The often-cited adage of “garbage in, garbage out” illustrates the importance of the data being input into a machine 

learning system. Defining high-quality data as being fit for use by data consumers, Strong, Lee, and Wang (1997) 

categorize the dimensions of data quality into four areas: intrinsic, accessibility, contextual and representational. Intrinsic 

data quality issues arise if there is a perceived issue with the reputation of the data.  This often occurs when there is more 

subjectivity in the data or when accuracy and believability of the data is questioned due to mismatches from multiple 

data sources. Contextual data quality problems focus on a lack of appropriate data.  Poor relevance of the data can result 

from incomplete or missing data, poorly measured data, or an insufficient amount of data and a lack of timeliness in the 

data production.   Contextual issues can also result when the aggregation and integration of different data sources 

produces inconsistent representations adding little or value to its adoption.  Accessibility data quality issues arise from 

security of the data, difficulties in producing the data in a useable format and the length of time taken to process or 

arrange the data into a useable format. Representational data quality issues focus on the ease of interpretability of the 

data and whether it is presented in a concise and consistent manner.  There is a wide variety of data sources and 

approaches when investigating the use of machine learning to perform property valuation.  The ability of adopters of the 

machine learning approach is partially dependent upon their ability to access quality data similar that utilized in academic 

research, making assessment of the quality of the data an important consideration in the comparison of different machine 

learning techniques.   

   Some more recent academic work appears to echo similar themes as those identified by Worzala et al. (1995), and help 

shape a broad set of practical criteria for analysis. McCluskey et al. (2013) discuss the progress made in the use of 

artificial neural networks in real estate valuation. They conclude that the “ANNs retain a ‘blackbox’ architecture that 

limits their usefulness to practitioners in the field.” They provide four simple questions to more broadly evaluate the 

efficacy of machine learning techniques to real estate valuation. 

• How simple is the approach to explain?

• How consistent is the model structure?

• How transparent is the model output?
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• How explicit is the locational element?

   The first three of these questions echo the discussion by Worzala et al. (1995).  They also mirror the characteristics 

identified as being important to the adoption of technology by the TAM and TTF models.  The final question places a 

focus on aligning an important element of the valuation task with the use of machine learning.  These questions are 

related to the practice-based evaluation criteria we identified at the beginning of this section.  Users prefer that a machine 

learning property valuation system can produce results that are explainable, consistent, and transparent. 

   Finally, the importance of adopting appropriate technology has not been lost on real estate professionals.  The 

International Association of Assessing Officers (IAAO) Standard on Automated Valuation Models (AVM) (2018) stress 

the importance of many similar themes.  Their standards provide guidelines practitioners should follow when utilizing 

machine learning in developing AVMs.  The standards include underlying statements of principles related to model 

transparency, model applicability, and establishing public trust in the results (confidence for stakeholders), which mirror 

the desire for consistency, simplicity, and transparency of adopted machine learning techniques discussed by McCluskey 

et al. (2013).  The standards additionally include detailed principles related to the validity and transparency of the data 

utilized as well as statistical testing and certification of the AVM which echo elements of the TTF model.  Finally, the 

standards emphasize the use of recognized appraisal principles in designing the AVM, effectively addressing the need to 

align the task to the technology including an emphasis on utilizing information related to the location of the property as 

highlighted by McCluskey et al. (2013).  

   These theoretical and practical criteria lay an interesting foundation for the critical analysis of how the application of 

machine-based learning has progressed since the work of Worzala et al. (1995). It is natural to ask if the literature shows 

a maturing and refinement of approaches that helps advance the adoption of machine learning to real estate valuation and 

if the lessons learned may also be applied to other applications of machine learning. Using the general principles of the 

TAM and TTF models as a foundation, and then incorporating the areas identified by Strong et al. (1997), McClusky et 

al. (2013) and the 2018 IAAO standards, a broad theoretical and practical set of property valuation system performance 

evaluation criteria are available for assessing each study identified in the systematic literature review.  A new technique 

does not have to perfectly match all of the criteria to be seen as an effective solution, but the more criteria it addresses 

the better. 

   The combination of performance criteria designed for use across all information systems and criteria specific to the 

real estate valuation problem can be categorized into three areas related to the standard components of an information 

system: input, process and output.   A summary of the reviewed criteria is presented in Table 1 utilizing three broad 

categories: (1) Data quality and ease of use; (2) Reasoning, alignment, and explication; and (3) Usefulness and 

consistency of results. We refer to this as the data, reasoning and usefulness (DRU) evaluation framework.  The criteria 

provide a basis for analysis of the progress made on the development of machine learning property valuation systems. 

Input Process Output 

Source Data Quality and 

Ease of Use 

Reasoning, Alignment, 

Explication 

Usefulness and Result 

Consistency 

Data Quality 

Strong, Lee & Wang 

(1997) 

Intrinsic, Accessibility, 

Contextual, 

Representational 

Technology Acceptance 

Model (TAM) 

Davis (1989) 

Perceived Ease of Use, 

Perceived Complexity of 

Technology 

Time Taken to Become 

Skillful 

Perceived Usefulness of 

Result, Improved 

Quality of Work, 

Effectiveness of 

Outcomes, Increased 

Productivity 

Task-Technology Fit 

(TTF) 

Quality, Availability, 

Accessibility and 

Compatibility of Data, 

Ease of Use 

Technology 

Appropriateness, 

Technology Reliability 

Ability to Improve 

Performance, Output 

Timeliness 
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Goodhue & Thompson 

(1995) 

McCluskey, McCord, 

Davis, Haran & 

McIlhatton (2013) 

How Explicit is the 

Locational Element? 

Consistency of Model 

Structure, How Simple is 

the Approach to Explain? 

Result Transparency 

International Association 

of Assessing Officers 

(IAAO) (2018) 

Data Validity and 

Transparency, 

Locational Element 

Recognized Appraisal 

Principles, 

Statistical Principles 

Statistical Significance 

Table 1. Summary of DRU Evaluation Framework Criteria 

4. Systematic Literature Review Methodology

   A systematic literature review identifies relevant research that incorporates related methodologies and then compares 

them based upon set of criteria to assess their strengths and weaknesses as well as identify areas for further exploration. 

The resulting analysis will provide directions for researchers in their utilization of machine learning techniques in real 

estate valuation as well as their use in other related problem domains.  

   The use of a systematic literature review to assess the use of machine learning has often been cited as providing insight 

into future research and application of machine learning techniques.  Wen et al. (2012) reviewed empirical literature 

related to the application of machine learning for software effort estimation.  Malhotra (2015) similarly reviewed the use 

of machine learning models in software fault prediction.  Other examples have focused on the application of machine 

learning in the sciences.  Mosavi, Ozturk and Chau (2018) reviewed the literature using machine learning to assist 

hydrologists in predicting floods and designing approaches to decrease loss of life and damage to property.  Cabitza, 

Locoro and Banfi (2018) evaluated the use of machine learning in the design of orthopedics designed to address bond 

and muscle disorders.  Finally, Strader et al. (2020) utilized a systematic literature review to investigate the ability of 

machine learning techniques to predict stock market performance.   

   The authors each independently conducted a search for peer reviewed academic literature utilizing machine learning 

in the real estate field.  Searches were conducted using EconLit, EBSCO, and Google Scholar.  The authors decided to 

include articles beginning in 2000 to the present to provide insight into how the use of machine learning has evolved 

during this time when applied to property valuation.  Studies looking at other aspects of the real estate industry were 

excluded.  For example, Zekić-Sušac, Has and Knežević (2021) used deep learning to identify predictors of the cost of 

energy consumption in public buildings.  While the ability to forecast energy costs could provide an identifying 

characteristic utilized in real estate valuation, it is not a direct example of valuation.  Articles evaluating broad market 

trends such as returns to real estate investment trusts (REITs) (Chen et al., 2014) or house price indexes (Milunovich, 

2019) are also not discussed.  The final list of articles included in the study is not intended to be a comprehensive review 

of all articles on the subject, but instead a representative sample.  Hardware, software, data storage, and networking 

capabilities prior to 2000 are substantially different from today so very early machine learning studies may not provide 

insights that are relevant to current and future work in this domain. Articles were then reviewed and broadly categorized 

by the prominent machine learning technique utilized. 

5. Review of Studies Using Machine Learning Technologies for Real Estate Valuation

   Machine learning encompasses a variety of intelligent system approaches where outcomes are predicted based on a set 

of input parameters.  To assist in our evaluation of previously published machine learning-based property valuation 

studies, we organize the following review based on the primary machine learning method used in each study.  We found 

that the most common machine learning techniques used in these studies included artificial neural networks, regression 

trees, and support vector machines.  The final sub-section considers additional studies that utilized hybrid methods, 

multiple approaches, or other techniques.  Each sub-section provides a brief description of the machine learning technique 

followed by a review of the related studies. 

5.1 Artificial Neural Networks (ANNs) 

   Artificial neural networks (ANN) are computational models based on biological neural networks. In the network, nodes 

(neurons) are grouped together starting with an input layer and ending with an output layer. Signals are propagated 
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through several layers of connected nodes as they learn based on examples and modify their solutions by adjusting 

parameter weights to reduce the level of prediction error. The use of neural networks is a good fit for the complexity of 

the real estate valuation problem and it is was one of the earliest ML techniques investigated.   

   Din, Hoesli and Bender (2001) used a geographic information system (GIS) to determine a quantitative geo-index 

capturing eight environmental measures such as the distance to the city center, level of quietness, and quality of view for 

residential real estate in Geneva, Switzerland.  They developed four different scenarios all of which incorporate four 

standard quantitative variables such as number of bedrooms.  The scenarios differ by the number and type of 

environmental variables included. For each year from 1978 to 1992 the authors use linear regression and ANN models 

to construct a price index and compare the model to a yearly price index. The authors only provide a general graphical 

representation of the results from the four scenarios for both the linear regression and ANN models.  The limited size of 

their dataset prevented a thorough training, testing, and validation procedure in the ANN model.  Alternatively, they 

deployed a back propagation technique to optimize correlation with target prices.  The resulting best ANN models had 

two to four hidden nodes depending on the scenario.  They conclude that in the ANN model the differences across 

scenarios are more pronounced and that the general shape of the two approaches is similar within each scenario. Without 

a more formal measure of performance, it is difficult to draw conclusions on the appropriateness of the ANN model and 

its performance from their work. The small dataset provides an example where the technique did not align well with the 

data quality. While the model includes locational components, this work illustrates many of criticisms of the early 

attempts to adopt ANN with limited data and limited ability to test for result robustness. 

   In contrast, Nguyen and Cripps (2001) find that ANN generally improves upon a multiple regression approach (MRA) 

when a large dataset is utilized and model specification is carefully considered. The authors describe a host of possible 

methodological issues which must be addressed when employing ANN.  Included among these are the selection of the 

training sample, the selection of the validation set, the number of hidden layers, number of nodes in each hidden layer, 

and the possibility of overtraining.  To investigate the importance of possible model misspecification they specify six 

different models across 18 different training sets. To test the performance of the model the authors look at the mean 

absolute percentage error (MAPE) and absolute percentage error (APE) or forecasting error (FE).  The general conclusion 

of their work is that, as the model becomes more complex, the size of the training set must increase for the ANN model 

to outperform the MRA.  Unfortunately, it may also decrease confidence in the use of ANNs by providing such a wide 

combination of training sets and models. The issues surrounding model specification may increase the perceived 

difficulty of use and prevent adoption of the technique.   

   The importance of model specification and sample size are supported by Peterson and Flanagan (2009) who also find 

that ANN model performance increases with larger training sets, while the performance of linear hedonic regression 

models does not.  The authors also test for the importance of nonlinearities in the data negatively impacting the regression 

results and reject the null hypothesis that no missed nonlinearities exist. Ultimately ANN was found to significantly 

outperform linear hedonic regressions. This provides strong evidence that correctly specified ANN models have the 

potential to improve upon traditional regression approaches.     

   The correct specification of the model is a crucial element of the utilization of ANN for real estate valuation and in 

developing widely utilized techniques that can be adopted professionally.  McCluskey et al. (2012) compared ANN to 

MRA, spatial simultaneous autoregressive models (SAR), and localized geographically weighted regressions (GWR) for 

the mass appraisal of properties in Northern Ireland.  The authors focus on multiple measures of model performance 

expanding upon those used by Peterson and Flanagan (2009).  McCluskey et al. (2012) attempt to find a balance among 

the four competing features discussed earlier.  The authors explain that a tension exists between the simplicity of the 

approaches, the consistency of the model structures, the transparency of the output and the explicit nature of the locational 

elements.  By looking at a wide range of performance criteria they found that the GWR method strikes the best balance 

of accuracy while accounting for consistency of results.  This is in contrast to the ANN approach whose validity is 

retested each time the model is deployed. The GWR approach also provides more transparency in its results compared 

to ANN. The authors conclude by ranking each of the four techniques in each of the four desired features. Their final 

mean rankings place ANN models in last place with MRA and SAR ranked higher for simplicity and consistency and 

GWR ranking first for transparency and the explicitness of the locational element.  In short, the ANN results do not 

provide any evidence of the importance of any included locational components of the ANN model. Their results highlight 

the difficulty of widespread adoption of MLA approaches for real estate valuation.  

   The lack of transparency in explaining the results and in the methodology decreases perceived ease of use and may 

slow adoption of ANN techniques and creates difficulty explain the reasoning behind the adoption of the technique.   
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   In contrast, Cajias and Ertl (2018) found poor performance using a geographically weighted regression (GWR) 

compared to a generalized additive model (GAM) in estimating house prices in Germany.  GWR expands OLS to 

incorporate local regressions in hopes of identifying spatially varying parameters.  GAM allows covariates to take 

nonlinear form, consistent with the locational aspect of real estate data.  They surprisingly find that GAM and OLS 

perform similarly and both outperform GWR.  The performance differences of GWR may relate to the sample used in 

the two studies.  McCluskey et al. (2012) sample was limited in size with 2694 properties in Northern Ireland.  Calias 

and Ertl’s sample encompassed 570,000 observations across 46 regions of Germany.  

   The importance of localized variables was confirmed by Mimis, Rovolis and Stamou (2013). They included a locational 

characteristic in their data for properties in Athens, Greece and found the that an ANN model outperformed an SAR 

model in terms of lower absolute mean errors. The authors improved upon earlier locational variables by incorporating 

a GIS to create variables linked to locational characteristics across a wide geographic area.   

   Chiarazzo et al. (2014) also found that the inclusion of environmental, landscaping, and proximity to industrial areas 

all play a key role in valuations in their dataset.  These are also very localized variables and specific to the dataset and 

location of the properties under consideration in Italy.  In contrast to the Mimis study, Chaiarazzo et al. (2014) includes 

42 input variables and incorporates an ANN with three hidden layers with the first two containing 20 neurons each.  

Through a sensitivity analysis, the authors find that the most relevant features impacting property value were special 

features such as proximity to a beach.  Their choice of a more complex and less transparent ANN model brings back 

concerns related to the impact of changes in specifications and their sample of only 193 records is not an appropriate fit 

for the MLA.  

   Two additional studies Yalpir (2018) and Abidoye and Chan (2017) also suffered from small sample sizes that question 

if an ANN approach was appropriate.  Yalpir (2018) investigated three different ANN activation functions and an MRA 

approach and found that ANN outperformed the MRA approach.   The study included an adaptive neuron activation 

function developed by Kahramanli and Allahverdi (2009) that had previously been used mainly in the biomedical field. 

The results indicate that the adaptive ANN outperformed the classical, nonadaptive, training functions in multiple 

measures of performance.    

   Abidoye and Chan (2017) found that an ANN provides reliable valuation in a developing economy using data from 

Nigeria.  Their work used data gathered from multiple real estate firms as opposed to standardized data from a centralized 

database. The pooling of data created an interesting set, but might limit practitioners from attempting a similar approach. 

They found that the number of servants quarters was the number one determinant of the property value, which they point 

out is in contrast the literature from other parts of the world.     

   Yacim and Boshoff (2018a) attempt to improve upon model specification issues by comparing multiple training 

algorithms to 3,232 sales transactions in Cape Town, South Africa.  When identifying the best approach, the authors 

build upon the work of McCluskey et al. (2012) and provide a ranking order of multiple measures of error, including a 

measure of coefficient of dispersion.  The use of a ranking of multiple measures of model predication and accuracy 

demonstrates the need for consistency in model evaluation. Their results indicate that the back propagation training 

algorithm that has been widely utilized in real estate valuation research did not perform as well as the three other training 

algorithms explored.  The other three algorithms, Conjugate Gradient (CG), Levenberg-Marguart (LM) and Powell-Beale 

Conjugat Gradient (PBCG) all outperformed BP.   This study provides a valuable addition with their comparison of 

multiple ANN techniques. 

5.2 Regression Trees (RTs) 

   A regression tree is built through an iterative process known as binary recursive partitioning that splits the data into 

partitions or branches and then continues splitting each partition into smaller and smaller groups. There are many 

different techniques for building the trees and determining the number of partitions or depth of the tree.  Mullainathan 

and Spiess (2017) discuss the complexities associated the use of regression trees to investigate a multitude of economic 

problems, including an illustration of multiple techniques to real estate valuation.  Following Mullainathan and Spiess 

(2017), a tree that results in each observation ending up as a final leaf would fit the sample data perfectly, however this 

tree would perform poorly in predicting prices from the out of sample data.  This result illustrates the problem of 

overfitting which is common to regression trees.  Ultimately, instead of looking for the perfect tree, the goal should be 

choosing the best tree conditioned upon, or regulated by, a set of criteria designed to improve the out of sample 

performance of the tree.  Multiple iterations of the tree are then produced using partitions of the out of sample data and 
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looking for the tree that provides the best out of sample performance for each partition.  Finally, a tree is built by 

combining the best fit trees across the different partitions.    

   Central to the process summarized by Mullainathan and Spiess (2017) is the criteria utilized in improving the 

performance of the tree. There are a large variety of potential criteria that could impact tree performance including tree 

characteristics (depth of tree, number of nodes, connectivity between nodes, etc.), included independent variables, 

process characteristics (number of partitions, size of partitions, number of random draws, etc.), specified functional forms 

(minimized loss function, regression, etc.) and performance criteria (coefficient of determination, absolute percentage 

errors, etc.).  

   Mullainathan and Spiess (2017) provide the following four general classes and examples of regularization processes: 

• Global /parametric predictors (Linear: subset selection, LASSO, ridge regression, Elastic net)

• Local / nonparametric predictors (decision trees, random forest, nearest neighbors, kernel regression)

• Mixed predictors (deep leaning, neural nets, convolutional neural nets, splines)

• Combined predictors (bagging: unweighted average of predictors from bootstrap draws, Boosting: linear

combination of predictions of residuals, ensemble: weighted combination of different predictors)

   An illustrative example is the random forest process. Random forest utilizes random choices from the possible variables 

to determine each split in the tree. The process of random selection occurs over a large number of sample subsets. The 

final result then represents an average across a large number of deep but similar trees.  In contrast, gradient boosting 

techniques start with a shallow tree using a subset of the data. The tree is then updated based upon residuals which are 

used to correct for mistakes in the original tree and produce an updated tree. The updating process is repeated until no 

improvement is found.  This requires a process for tuning the tree or selecting various attributes of the tree to optimize 

performance. 

   Antipov and Pokryshevskaya (2012) provide an early application of random forest to property valuation and a 

comparison of ten different tree approaches.  The authors point to the benefits of random forest when dealing with 

common issues in property data such as its ability to deal with categorical data, missing data, and unique property 

characteristics.  Applying two-step method to address heteroscedasticity in the data, the authors provide a broad ranking 

of their approaches by segmenting their results into three different buckets based on MAPE and COD.  The highest 

performing group are techniques that produce high accuracy and low sales ratio variability. This group includes random 

forest, boosted trees and K nearest neighbor (KNN) (mean), with random forest performing the best.  They find that chi-

squared automatic interaction detection (CHAID), Exhaustive CHAID, CART and radical basis function neural network 

provide lower performance in both categories. Finally, they find that standard regression, KNN (median) and MLP NN 

provided low accuracy and high sales ratio variability.   

   Mullainathan and Spiess (2017) compare OLS to four different regression tree processes, a simple regression tree tuned 

by depth, LASSO, random forest, and an ensemble method combining LASSO and forest. The survey includes 51,808 

observations from the 2011 American Housing Survey of house value with 150 independent variables including home 

characteristics and quality measures. The authors randomly draw a training sample of 10,000 units and evaluated 

performance on the remaining out of sample observations. The authors find the R2 of the hold out sample improves from 

.417 for OLS to .455 for random forest and to .459 for the ensemble method.  They also partition the data into quintiles 

and find strong relative improvement over OLS for the Ensemble in each quintile and an improvement for random forest 

in the lowest four quintiles. The authors provide an in-depth review of potential complications with the use of regression 

trees.  One limitation they highlight is the tradeoff between the flexibility of the tuning process considering multiple trees 

and similar performance from two outcomes with divergent coefficients.  This possibility stresses the importance the 

choice of tuning mechanism to insure it is a fit to the task of property valuation.   

   Kok, Koponen and Martinez-Barbosa (2017) confirm the superiority of some regression trees to OLS utilizing a large 

data set of multifamily properties from the commercial real estate markets in California, Texas, and Florida. The dataset 

is compiled from three different primary sources.  The traditional approach for commercial property is to focus on the 

income approach utilizing the net operating income (NOI) of the property discounted at a capitalization rate.  Importantly, 

the capitalization rate and NOI are not necessary in a regression tree methodology and the authors are able to investigate 
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the importance of including NOI in the model.  The authors compare four different sets of data. The first three sets differ 

in their treatment of NOI with one excluding NOI as an explanatory variable while the second includes NOI and the third 

includes a modeled NOI.  The final set of data predicts the NOI per unit as opposed to the price.  On each data set they 

utilize four techniques OLS, random forest, gradient boost and XG Boost. The findings indicate each of the three 

regression tree approaches improve upon OLS in both MdAPE and R2. Gradient Boost and XG boost also both 

outperformed random forest in each data set.  The inclusion of NOI is shown to be a key component with both the actual 

NOI and modeled NOI showed much lower absolute errors and higher R2 in all of the AVMs. The gradient boost and 

XG boost methodologies showed the most improvement relative to OLS when NOI was included. Surprisingly, the 

Random Forest approach had a higher MdAPE and slightly lower R2 than the OLS for the data set including NOI. 

   Kok, Koponen and Martinez-Barbosa (2017) also placed a large amount of emphasis on location.  They emphasize the 

importance of location by including data on three broad types of information: local amenities such as restaurants, bars, 

music venues etc.; market data such as crime rates, vacancy rates, construction permits, etc.; and census data such as 

population, income, employment, etc.  For each property the authors form catchment areas based upon estimated drive 

times of 3, 5, 10, 15 and 30 minutes.  They then cross reference the catchment area for each of the sets of local 

characteristics.  The methodology allows the authors to further investigate the importance of location and individual 

property characteristics.  They find in all datasets that general property characteristics explain less than half of the 

dependent variable.  In the NOI dataset, individual property characteristics explain only 24% of the price, with locational 

information linked to amenities, market data and census data explaining 76% of the price.  While this is interesting, the 

most important variable for forecasting price is found to be NOI when it is included as an explanatory variable.  When 

forecasting NOI, delinquency rates on single family homes is the most important. 

   Baldominos et al. (2018) compare a variety of ML approaches including multiple variations of each approach.  The 

authors compare support vector regression (SVR), k-nearest neighbor (KNN), extremely randomized regression trees (an 

extension of random forest) and multi-layer perceptron (feed forward) ANN (MLFF-ANN).  The paper focuses on high-

cost residential properties in a single district of Madrid, Spain creating a fairly homogenous dataset which may limit the 

generalizability of their results to a wider array of properties. Locational variables were included in the dataset, 

emphasizing the location within the district.  In comparing the best performing version of each approach, the authors 

report that the extremely randomized regression tree outperformed the others in terms of mean absolute error (MAE) 

with the top ten lowest MAE all occurring from regression trees.  The regression trees also had a much smaller median 

absolute error (MedAE).  A single layer neural network reported the worst MAE and MedAE, a result the authors attribute 

to possible overfitting. Interestingly the authors find that increasing the number of trees in the ensemble method has little 

to no impact on the MAE, while the use of bootstrapping has a significant negative impact. In the case of the MLP-ANN, 

the result is very sensitive to the structure with more layers and fewer units resulting in smaller MAE and MEdAE.   

   Mayer et al. (2019) compare six approaches to a dataset of 123,000 homes in Switzerland from 2005 to 2017.  The 

authors compare OLS, ANN, robust regressions, mixed effects regression, random forest, and gradient boosting. The 

authors not only compare the six methods, but also compare two methodologies for updating the data set used as data is 

added over time.  The first methodology adds data to the original data set and thus characterized as an extending window 

approach. The second methodology keeps the data used at a fixed interval deleting old data as new data is added and thus 

characterized as a moving window approach.  The authors find little difference between the data selection methodology 

across all six of the approaches they utilize. Mayer et. al (2019) find that the gradient boosting technique performance 

was statistically better than the other methods for RMSE, MAE, MedAE.  Gradient boosting also produces a larger 

portion of results within 10% and 20% of the actual transaction price.   

   Hu et al. (2019) also utilized a large number of methods in looking at housing rents in China and find very similar 

results among many of the techniques they deploy. The authors utilized six different measures of performance and find 

that two bagging based regression tree approaches performed slightly better than MLP-ANN, gradient boosting 

regression trees, KNN and support vector regression (SVR). The performance of the different ML approaches was very 

close with the exception of support vector regressions, which significantly underperformed the others.   

   Hong, Choi and Kim (2020) conclude that a standard random forest approach improves upon hedonic OLS regressions 

in their sample from South Korea.  They found that 72% of the valuations were within 5% of the actual market price 

using random forest compared to only 15.5% when using OLS.  The authors attribute part of the superior performance 

to their data set which was concentrated geographically and similar in structural characteristics.   

   The issue of location is often not addressed directly in the model adjustments, even though many authors discuss how 

location may impact their results.  Pace and Hayunga (2020) provide a technique specifically targeting location.  They 
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investigate the ability of the information found in the residuals from OLS regressions in a spatial difference model to 

improve performance in the construction of a simple regression tree.  They then compared the basic tree to forests using 

both boosting and bagging.  They found an improvement from the boosting and bagging procedures incorporating both 

sets of residuals, with greater improvement from incorporating the OLS residuals than from those for the spatial 

difference model. By comparing the spatial difference and OLS models the work highlights the importance of location 

in real estate data.  Interestingly, when reducing the entire sample to subsamples based on the 5,000 closest observations, 

the performance gains from bagging disappeared compared to the simple spatial difference tree. Decreasing the sample 

size allowed the spatial difference model to outperform the bagging methodology.   The authors report that the results 

took over 7 hours of computing time, mainly due to the bagging procedure.  This result calls into question if the adopters 

may view the time as decreasing the perceived ease of use of bagging and avoid adopting the technique.  

   When investigating rural housing price valuations Bogin and Shui (2020) echo potential issues related with perceived 

ease use shown by Pace and Hayunga (2020). The authors find that a random forest regression with boosting performs 

very similarly to a standard OLS regression in their data set.  However, the boosting technique required an extra 24 hours 

of computing time. Contrary to other authors, Bogin et. al (2020) find that a standard random forest regression tree 

outperforms one enhanced by boosting.  However, the standard random forest treatment required 48 hours of computing 

time and the random forest regression suffers from substantial overfitting, while their other approaches do not. The 

authors point to the uniqueness of their data set which encompasses 420,370 rural households as identified by the Uniform 

Appraisal Dataset.  The authors hypothesize that including urban data, with more concentrated households in the training 

sample, might help with overfitting.  They find that the urban data improves the performance of the random forest relative 

to the other approaches while decreasing the overfitting but that it also introduces a bias.  Finally, the author state that 

their appraisal data allowed for over one hundred explanatory variables, this level of detail may not be available in public 

records accessed by most appraisers.  Limiting the number of variables resulted in the performance gap between random 

forest and the other approaches to be much narrower when looking at the rural sample.  The tradeoffs between computing 

time, performance, model specification, and samples illustrate the difficulty of generalizing ML performance to property 

valuation.   

   Alfaro-Navarro et al. (2020) developed an automated process to select the best tree method among those included in 

their study for each municipality studied in Spain.  They utilize a standard regression tree along with trees based upon 

bagging, boosting and random forest algorithms.  The process then identifies the best performing model for each of the 

433 municipalities (out of 8,125 possible municipalities) which had at least 100 sample observations.  The total study 

thus encompassed over 790,000 properties in 48 (out of 52) provinces.   Their results show bagging and random forest 

slightly outperform boosting in terms of both the (MAPE) and coefficient of dispersion and all of the enhanced methods 

outperform a basic RF.  Starting with segmenting the data by location, the paper provides an interesting approach to 

designing a more widely applicable model, which incorporates the importance of location.  Additionally, their data 

focused on sales price and 33 property characteristics are collected from publicly available websites.  This allows for a 

large consistent sample size utilizing publicly accessible data.  The paper is notable as it provides insight into whether 

the same technique would produce the best results across a larger geographic region, while still including a key 

component linked to location.  In contrast, most studies report a finding for a smaller region and provide little insight 

into the generalizability of the results. 

   Ho, Tang and Wong (2021) compare multiple ML techniques and conclude the choice between the techniques depends 

upon the goals and preferences of the end user.  The authors compare RF, and gradient boosting machine (GBM) and 

support vector machine (SVM). Using eighteen years of data on 40,000 transactions in Hong Kong the authors 

demonstrate that both RF and GBM outperform SVM.  In their data set the MSE, RMSE and MAPE are extremely close 

for RF and GBM and all three are higher for SVM.  Similarly, the R2 is almost identical for RF and GBM and lower for 

SVM.  The authors caution that the results do not necessarily indicate that SVM performs poorly, to the contrary the 

argue that its performance is satisfactory and question if the extra computational time required for RF and GBM, 

especially in the case of larger data sets.   

   Rico-Juan and Taltavull de La Paz (2021) demonstrate that random forest techniques are capable of capturing 

nonlinearities that are missed by traditional hedonic regression models, specifically the nonlinearities associated with 

location and time.  However, RF does not quantify the nonlinear relationships.  They also show that quantile regression 

can capture and quantify the impact of a particular characteristic on the price quantile.   

   Deppner and Cajais (2022) take a different approach to formally address the locational issues discussed by Bogin and 

Shui (2020) and Pace and Hayunga (2020).  The authors allow for spatial partitioning during the training of the regression 
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tree and compare spatial and non-spatial cross validation techniques.  This effectively groups training data by geographic 

position, placing an emphasis on the location of the property relative to others in the sample. However, they find the 

effectiveness of spatial partitioning depends upon the data set and goals for the predictions to be developed from its use. 

Their findings show that when the geographic area is very condensed, random partitioning may provide useful valuations. 

When the geographic area is larger with more variance in spatial dependence and density, spatial cross validation should 

be the preferred choice.  Their work demonstrates that spatial cross validation may underestimate the predictive accuracy 

of the valuation, however, they argue this is preferred to an assessment of the predictive accuracy that overstates the 

accuracy of the valuation.    

5.3 Support Vector Machines (SVMs) 

   SVMs use supervised learning where training examples are included in one of two categories. An SVM model 

represents the examples as points in a space with the goal of making the gap between the categories as wide as possible. 

New examples are classified based on the category in which they most likely belong. 

   Wang et al. (2014) apply an SVM in which the parameters are determined by particle swarm optimization (PSO).  The 

authors point to SVM as a more appropriate technique than ANN which can result in a local minimum as opposed to a 

global solution.  The authors find that the PSO-SVM produces both a lower relative error and lower MAPE compared to 

a standard SVM approach.  They also compare both SVM models to a back propagation neural network and find both 

PSO-SVM and SVM produce smaller errors than the BP neural network. While an interesting result, the authors forecast 

the average selling price for Chongqing, China as opposed to individual property prices.  Their work does shed some 

light on improvements in property valuation as the focus of their method is its application to small samples, which could 

occur in the real estate market in many locations.    

5.4 Hybrid Models, Multiple Approaches, and Additional Machine Learning Techniques 

   Hybrid models combine two or more machine learning techniques in an attempt to improve upon single technique 

performance.  For example, ANN requires specification of their respective optimization process and some ensemble 

approaches incorporate other ML techniques in the optimization process. Included in the review of this section are 

specialized regressions used for training ANNs, even though the specialized regression is not technically a machine 

learning technique. 

   Kontrimas and Verikas (2011) investigate property values in the Lithuanian Republic.  The authors compare results 

from a self-organizing map (SOM) to committees of predictors derived from OLS, SVM, and MLP-ANN approaches. 

The authors specify two sets of committee weights based on two different sets of locational zones, one defined by experts 

from the local property register center and a second approach base on the zones identified by the SOM.  The authors note 

that the two sets were much different in how they segmented the data, but that the properties were very similar across all 

locations making the locational component less important.  Both committee approaches showed much better outcomes 

than OLS, MLP or SVM on its own.  The authors also looked at the number of unacceptable valuations where the 

predicted value differs by more than 20% from the actual sale price.  Both committee weights resulted in only one 

unacceptable valuation respectively while the other methods resulted in 18 (SVM), 31 (OLS), and 42 (MLP) unacceptable 

values.   

   Perez-Rave, Correa-Morales and Gonzalez-Echavarria (2019) utilize a ML approach to selecting variables for two 

different large sets of data, one in Columbia and one in the United States. The approach of incremental sample with 

resampling (MINREM) designed to identify the most important variable. The authors then combine the MINREM 

approach with a traditional hedonic regression based upon the variables selected.  

   Multiple authors employ genetic algorithms to enhance other ML approaches. A genetic algorithm is an example of an 

evolutionary algorithm (Holland, 1992). The evolutionary process begins with a set of randomly generated problem 

solutions. In each iterative generation, the fitness of each solution is measured by an objective function. The solutions 

with higher fitness are retained (survival of the fittest) and these parent solutions are combined with other high fitness 

solutions to create a new generation of child solutions that retain some of the characteristics from both original solutions. 

The evolutionary process ends when a certain number of generations has been created or a satisfactory fitness level has 

been reached.  Based upon the systematic literature review, it appears that GA use for real estate valuation is much less 

common than ANN-based valuation approaches. However, Del Guidice, De Paola and Forte (2017) present one of the 

few applications of GA to predict rental prices for a small sample of 64 properties located in two neighborhoods in 

Naples, Italy.  The authors find that the GA outperform a multiple regression approach in accuracy. 
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   Ahn et al. (2012) proposes the use of a ridge regression coupled with a genetic algorithm (GA-ridge) when there is no 

clear preference between standard MLR or ANN.  Their work focuses on housing and rental indexes as opposed to 

individual property valuation removing any link to a localized market. The purpose of the ridge regression is to address 

multicollinearity among the independent variables.  The GA-ridge methodology simultaneously solves for the ridge 

regression solution through the use GA, effectively using the ridge regression as the fitness function.  Their results show 

that the GA-ridge outperforms MLR, ANN, and standard ridge regressions based on RMSE, MAE, and MAPE. 

Furthermore, they report paired t-tests of each of the reported error terms demonstrating a high level of significance in 

the improvement of GA ridge over the other methods.   

   Yacim and Boshoff (2018b) utilized particle swarm optimization (PSO) and a genetic algorithm (GA) to enhance the 

training of an ANN and compared the results to using back propagation neural networks BPNN as well as GA with back 

propagation and OLS. The purpose of the enhanced training methods is to avoid the possibility of local optimums 

resulting in a subpar weighting.  They find an improvement in model performance utilizing both PSO and GA to train 

the ANN. Their data includes a neighborhood code to account for locational differences.  They ultimately include 18 

property characteristics from 46 possibilities.  The variables that were eliminated likely exhibited multicollinearity.  Their 

results show the hybrid models and linear regression models outperform the standard BP-ANN overall. One of the 

benefits of BPNN, GA, and PSO training functions is the ability to investigate the relative importance of the property 

attributes found from the data.  The authors work provides an increase in transparency with a detailed description of 

methodology used and rationale for choice of methods.  Sun (2019) also found that use of GA to aid in the structure of 

the ANN produces superior results compared to BPNN.   

   Pai and Wang (2020) utilize GA to select parameters for four ML models, least squares support vector regression 

(LSSVR), classification and regression trees (CART), general regression neural networks (GRNN) and BPNN.  The 

authors used the average absolute percentage error in the objective function of GA to determine the specific parameters 

in each of the four ML approaches. They demonstrated that the parameter selection utilizing the GA procedure improved 

the performance of each of the four ML techniques compared to their application without GA. They also demonstrate 

that their LSSVR approach was superior to the other three approaches both with and without the aid of the GA technique. 

The authors then compare the MAPE in their studies to those of other authors.  From this they conclude that the LSSVR 

is superior to the methods used by the other authors, with the caveat that valuation differs by many non- quantitative 

factors that vary by location and consumer preferences.    

6. Discussion

   We can make several general observations after reviewing the literature related to the different ML approaches.  The 

review of literature related to artificial neural networks shows the need for large datasets, appropriate training samples, 

and very careful model specification that incorporates unique local variables associated with valuation of specific 

property types in specific geographic locations.  A downside across all of these studies is that there does not appear to 

be a generalizable solution.  Each study addressed property valuation for one scenario and did not work to identify 

generalizable techniques or problem features. The lack of transparency and perceived lack of ease of use did not improve 

over the twenty years of literature reviewed. Also, ANN was often applied to data sets which lack contextual quality due 

to their limited size.  In the literature applying ANN as the primary tool, five of six studies comparing ANN to regression 

approaches found ANN methods outperformed the regression approach utilized.  

   When ANN was compared to other ML techniques, ANN was often found to be inferior to the other techniques. 

McCluskey et al. (2012) found GWR outperformed ANN when considering four different categories linked to model 

performance related to data, reasoning and usefulness (DRU).  Even if the issues related to DRU were solved, standard 

neural networks were often shown to produce inferior valuations compared to other ML techniques.   In five articles, a 

form of regression tree was shown to outperform an ANN approach (Antipov and Pokryshevskaya (2012), Ahn (2012), 

Baldominos, et al. (2018), Mayer et al. (2019), and Hu et al. (2019)). Additionally, Wang et al. (2014) found PSO-SVM 

outperformed BPANN.  Multiple articles demonstrated ANN could be improved by incorporating other ML techniques 

to enhance ANN (Kontrimas and Verikas (2011), Wang et al. (2014), Yacim and Boshoff (2018b), and Sun 2019).  Those 

papers unfortunately did not compare the enhanced neural network to regression trees, but mainly demonstrated the 

increased performance of the ensemble ANN to more traditional ANN approaches. 
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   Advanced regression trees (random forest with boosting and bagging) were shown to be generally superior to standard 

hedonic regressions, KNN, SVR and various ANN models.  Additionally, Mullainathan and Spiess (2017) found that an 

ensemble combination of LASSO and forest outperformed either independently and OLS.  However, the ranking among 

different regression tree techniques is less clear.  Multiple papers found that either boosting or bagging techniques 

outperformed more standard random forest trees but the ranking between boosting, bagging and standard RF was not 

consistent. Kok et al. (2017) and Mayer et al. (2019) both found boosting techniques to dominate the others in their 

respective studies.  However, Alfro-Navarro et al. (2020) found bagging and standard random forest to slightly 

outperform boosting. Hu et al. (2019) found RF outperformed boosting and the extra tree regressions outperformed 

random forest in one sample and vice versa in a different sample. Overall, the ability of more advanced regression trees 

to universally outperform ANN, KNN and various more traditional regressions, makes regression trees an area of focus 

for future research. Similar to regression trees, SVM and the ensemble SVM approaches were shown to outperform ANN 

approaches when compared directly.  The downside of the regression trees is the amount of computational time and effort 

which may decrease adoption of the techniques. 

   The comparisons of the various ML approaches identified some common themes when considered in the context of the 

DRU evaluation framework presented in Table 1.  An ideal ML approach would lie at an intersection which encompasses 

the desired criteria of all three elements.  In other words, the approach would be generalizable to a wide range of scenarios 

and data sources, account for the location of the property, have low barriers surrounding both its perceived ease of use 

and perceived ease of adoption and finally produce performance improvement justifying any computation costs 

associated with its adoption. This is admittedly a high bar.  The literature review does however allow for some general 

conclusions to be drawn from the DRU framework that may help shape future research.  

   The data component of DRU focused on the quality of the data (including the locational element) and the perceived 

ease of use of the technology. Regardless of the ML approach utilized, the vast majority of studies attempted to account 

for location of the property.  In many cases the dataset utilized was implicitly accomplishing this task by limiting the 

valuations to a localized data set.  However, there were attempts to identified the influence of location in more diverse 

geographic data sets.  The lager issue which persists across the twenty years relates to the perceived ease of use of the 

technology and its alignment with the chosen data. This was especially apparent with the advanced regression models 

and hybrid approaches. Many of the same concerns that were expressed with early attempts to adopt ANN resurfaced 

with the advanced regression and hybrid approaches.  The concerns questioning ease of use largely disappeared in the 

case of basic ANN approaches.  Future research and advances in computing power may similarly be able to lessen the 

impact of perceived costs associated with ease of use related with the advanced RT and hybrid approaches.  

   The criteria summarized in the DRU framework highlight the need to consider if the benefit derived from a technique 

justifies the additional computing power and technical expertise required for its implementation. Weighing the impact of 

these tradeoff is an important component that leads to adoption in both the TAM and TTF frameworks. For studies using 

multi-technique approaches (two or more machine learning techniques combined into a hybrid system), these systems 

may marginally improve performance, but at some point, they become so complex that they are not practically usable. 

While the studies reviewed reported improvements in performance, they generally failed to investigate if the small 

increase in aggregate performance would translate into economic performance for the end users.  The technique needs 

to be understood at a level that allows the end user to have confidence in the perceived benefit of adopting the technique. 

Extending the results to demonstrate the economic benefit received by end users from small gains in average performance 

would help decrease questions associated with the effectiveness of the outcomes and provide motivation to adopt the 

more complex models.  Additionally, the articles reviewed often blur the line between a market value as defined by the 

professional appraisal standards and the output of the MP technique as discussed by Epley (2017).  

   Finally, the review does provide some additional directions for future research.  It is obvious that future work will 

continue to combine multiple machine learning methods to further improve property valuation performance while ideally 

offering improvements that simplify the adoption of the technique.  The goal should be to identify solutions that are 

generalizable to a wider range of property valuation scenarios.  Work could also extend to related real estate management 

decisions.  Future studies could address the problem of property portfolio management.  Which machine learning 

techniques would best be able to identify an optimal set of properties that would produce the best return with lower risk?  

This is a very common financial market question, but has not been addressed to the same extent in the real estate market.  

Genetic algorithms may be a good fit with this task because it can represent various sets of properties and then identify 

the characteristics that produce the best final solution.   
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   Another question is which machine learning techniques are best suited to identify the price direction (up or down) for 

a real estate market.  Researchers could consider SVMs as a potential machine learning technology that may best match 

this task.  Another related item to note is that human real estate managers will continue to have an important place in the 

market as they use the results from the machine learning systems as a decision support tool.  The best results will come 

from a scenario where the relative advantages of the system and the real estate manager are combined.  Studies should 

consider machine learning as a decision support tool and focus on identifying the relative advantages of technology and 

people when valuing properties.  This is especially important in identifying the relative importance of specific property 

characteristics as an input in the valuation process.  One of the main sources of nonlinearity is the dynamic and evolving 

nature of the property characteristics and how well they match the current demands of purchasers.  Much of the real 

estate professional’s value comes in spotting those trends in real time, a difficult task for any quantitative approach 

needing a large number of data points.  An interesting question is whether ML can identify societal trends which may 

aid the real estate professional in real time adjustments to market prices. 

   A systematic literature review methodology has some limitations.  One of the primary limitations is that machine 

learning applications that were not successful are rarely published so there is a bias toward techniques that showed some 

improvement in the unique real estate market that was being studied. Even with that bias we fill the literature review 

produced useful insights to be considered in future adoptions of ML techniques to property valuation. 

7. Conclusions

   This study identified and reviewed published studies from the two decades (starting in 2000) where machine learning 

was used for property valuation.  The purpose was to identify which machine learning techniques have been used, develop 

theoretical and practical criteria that can be used to provide a broad assessment of system performance, identify common 

findings across the studies, and conclude with a set of theoretical and practical implications and future research directions. 

   The primary overall conclusion that arises from this review is that machine learning can improve the property valuation 

process and price identification accuracy. There is no one perfect machine learning technique in this domain, but 

continued work can further refine the methods used and ultimately produce solutions that meet most, if not all, of the 

system evaluation criteria identified in this study.  From a research standpoint, it is apparent that both TAM and TTF 

provide a theoretical basis for assessing machine learning use for property valuation.  Effective property valuation 

systems must be perceived as useful (with the technology matching the task), and also perceived as easy to use.  From a 

practice perspective, future property valuation systems must focus on computational simplicity and utilization of easily 

accessible datasets.  
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