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Abstract 

This study aims to investigate the performance of Machine Learning (ML) techniques used in Human Activity 

Recognition (HAR). Techniques considered are Naïve Bayes, Support Vector Machine, K-Nearest Neighbor, 

Logistic Regression, Stochastic Gradient Descent, Decision Tree, Decision Tree with entropy, Random Forest, 

Gradient Boosting Decision Tree, and NGBoost algorithm. Following the activity recognition chain model for 

preprocessing, segmentation, feature extraction, and classification of human activities, we evaluate these ML 

techniques against classification performance metrics such as accuracy, precision, recall, F1 score, support, and run 

time on multiple HAR datasets. The findings highlight the importance to tailor the selection of ML technique based 

on the specific HAR requirements and the characteristics of the associated HAR dataset. Overall, this research helps 

in understanding the merits and shortcomings of ML techniques and guides the applicability of different ML 

techniques to various HAR datasets. 
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1. Introduction

     The popularity of wearable technology has increased over the recent years (Iqbal et al. 2018). Applications such as 

self-management aimed at managing disease condition, and self-care for facilitating health and wellbeing have adopted 

wearable technology to improve health and wellbeing for users. Most of these wearable devices contains sensors such as 

accelerometers, gyroscopes, magnetometers, heart rate sensors and similar sensors embedded for successful human 

activity recognition (HAR). The availability of data coupled with the wide ranging applications of HAR resulted in HAR 

garnering significant attention in academia and in practice (Qin et al. 2020).  

     In that regard, machine learning and data mining techniques have proved beneficial in extracting features and 

classifying HAR data (Ramasamy Ramamurthy and Roy 2018). Most of the HAR applications in the market today are 

striving to improve their performance by utilizing ML techniques and have demonstrated success in terms of performance 

metrics such as classification accuracy and processing speed (Meyer et al. 2016). Further, HAR data are often 

characterized by a number of attributes, such as activity type, sensor type, preprocessing steps, and position of sensor on 

a specific body area. Such diverse characteristics makes HAR particularly challenging and is a persistent driver for 

ongoing research. Specifically, prior research has mainly focused on developing and improving novel ML models for a 

number of activities in unique environments and populations (Wang et al. 2019), e.g., elderly individuals in a home care 

environment (Chen et al. 2017). Further, most of HAR literature is concentrated around improving the HAR performance 

by considering a single dataset and a specific ML classification technique which limits the generalizability of the findings 

(Baldominos et al. 2019; Nabian 2017). Although some attempts have been made to compare various ML techniques on 

multiple HAR datasets (Dohnálek et al. 2014; Li et al. 2018), their focus is often limited to either improving feature 

learning or finding optimal techniques with the best tradeoff between speed and accuracy rather than a comprehensive 

approach that could be employed to understand the performance of ML techniques and map them to the characteristics 

of various HAR data sets. 

     Accordingly, this research study aims to analyze the performance of different ML classification techniques using 

various HAR datasets. As HAR sensor data sets can vary significantly with respect  characteristics such as sampling 

frequency, type of activities performed, number of sensors, sensor types and sensor positions, these variations in 

characteristics have been demonstrated to impact ML techniques hyper parameter tuning, classification performance, 

and run time. (Baldominos et al. 2019; Dohnálek et al. 2014; Nabian 2017; Wang et al. 2019). This research extends the 

understanding of the performance of ML classification techniques on HAR data. The significance of this research is both 

theoretical and practical. From a theoretical point of view, this research helps to understand the merits and shortcomings 

of ML techniques that could help future researchers figure out how to improve the ML classification techniques for HAR 

datasets. From a practical point of view, this research helps in guiding the applicability of different ML classification 

techniques to HAR datasets. Altogether, the research on HAR performance improvement can remarkably facilitate self-

management and self-care interventions. In addition, these improvements extend beyond the medical and healthcare 

domains to other context, wherever the detection of human activity is vital. 

     The remainder of the paper is organized as follows: a brief literature review is presented in section 2, while section 3 

describes the methodology including the characteristics of the dataset and the details of the analysis process. Section 4 

illustrates the results obtained from the analysis and section 5 summarizes and discusses the results by comparing with 

extant literature. Finally, section 6 concludes by summarizing the key contributions, limitations, and suggests directions 

for future research. 

2. Literature Review

2.1 Human Activity Recognition 

     Raw data obtained from the wearable sensors undergo a number of steps as demonstrated by the Activity Recognition 

Chain (ARC) model (Bulling et al. 2014) for classifying human activities as shown in Figure 1. In this model, the first 

step involves sampling the raw data obtained from different sensors with multiple dimensions, before it undergoes 

preprocessing, segmentation, feature extraction, and finally, classification. Among these steps, feature extraction requires 

deep domain expertise in the field. Therefore, researchers tend to depend on domain experts for feature engineering and 

extraction. Utilizing the resultant engineered features with ML and deep learning techniques, the activities are classified 

into specific human activities (Saha et al. 2018).  
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Figure 1: Activity Recognition Chain (ARC) Model (Bulling et al. 2014) 

     HAR research focuses predominantly on classifying human activities using ML techniques or/and preprocessing the 

data (Baldominos et al. 2019; Jain and Kanhangad 2018; Nabian 2017; Ronao and Cho 2017; Sousa et al. 2017). HAR 

using smartphones is a popular sub-field where there is abundant of literature that deals with improving HAR 

classification using various innovative pre-processing and ML techniques (Anguita et al. 2013; Jain and Kanhangad 

2018; Micucci et al. 2017; Nakano and Chakraborty 2017; Ronao and Cho 2014, 2017). Few studies tried to improve the 

HAR classification obtained from inertial sensors using hyper parameter tuning of ML techniques (Gaikwad et al. 2019; 

Garcia-Ceja and Brena 2015; Seto et al. 2015). Others have also focused on the problems and difficulties associated to 

segmentation and proposed solutions to tackle these problems (Kozina et al. 2011; Oresti Banos 12:19:30 UTC). These 

studies have shown a partial effect of segmentation on the performance of ML techniques. Similarly, few studies 

demonstrated that the window size affects the HAR classification, e.g., 1-2 second interval results in optimal tradeoff 

between accuracy and recognition speed (Banos et al. 2014; Ni et al. 2016). 

2.2 Comparative analysis 

     Most of the HAR literature is concentrated around improving the performance HAR using a single dataset and a 

specific ML technique which limits the generalizability of the findings. There are some studies that tried to consider 

various ML techniques (Akhavian and Behzadan 2016). These types of analyses compare various ML techniques to 

identify the most suitable technique for a HAR dataset (Baldominos et al. 2019; Nabian 2017). These studies used a 

single dataset to understand the relation between few HAR characteristics such as sensor position, type of activity and 

hyper parameter tuning on ML performance. Recent studies on HAR has shown evidence that no prior preprocessing of 

raw sensor data has shown reasonable ML performance especially in a comparative study (Dohnálek et al. 2014). 

Although some attempts have been made to compare various ML techniques on multiple HAR datasets (Dohnálek et al. 

2014; Li et al. 2018), their focus is often limited to either improving feature learning methods or finding optimal 

techniques with the best tradeoff between speed and accuracy. Accordingly, there is a need for a comprehensive study 

to evaluate and benchmark the performance of various ML techniques with different HAR datasets and map the 

characteristics of various HAR datasets to appropriate ML techniques. Prior work on HAR data partly tried to address 

this gap by comparing multiple HAR datasets with the accuracy score of different ML techniques (Ambati and El-Gayar 

2020). We aim to extend this work by collectively considering multiple HAR datasets, the type of activities being 

classified, the performance of an expanded portfolio of ML techniques, and the use of an expanded set of performance 

metrics to get more insights in understanding the ML techniques and their relation to HAR data in conjunction with the 

extant literature. These insights can help future researchers in designing a robust and comprehensive framework/model 

depending on the HAR application. 

3. Methodology

3.1 Datasets 

     We used three HAR datasets in a manner that captures the diversity of characteristics commonly present in various 

datasets. The first two datasets (Pampa2 and mHealth) are from the University of California, Irvine (UCI) data repository. 
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The datasets were chosen in such a way that they are distinct in terms of sensors utilized, sampling frequency, activity 

environment and similar attributes, and are utilized in prior research (Anguita et al. 2013; Gaikwad et al. 2019; Garcia-

Ceja and Brena 2015; Nakano and Chakraborty 2017). This makes these datasets unique and appropriate for utilizing 

them to benchmark various ML techniques. The third dataset is selected from the SWELL project supported by the Dutch 

national program COMMIT (Shoaib et al. 2014). Table 1 presents the data sets and their characteristics. 3D 

accelerometers, 3D gyroscope, and 3D magnetometer are the common sensors employed in all the three datasets. These 

sensors have become a basic functionality for wearable devices that attempt to recognize human activity. 3D 

accelerometer helps in recognizing the speed with which the user is moving in all three dimensions, 3D magnetometer 

helps in recognizing the orientation of the user with respect to earth’s magnetic north, and 3D gyroscope helps in 

recognizing the angular velocity of the user. Other than these three sensors, each dataset has some unique sensors when 

compared to each other. For example, Pamap2 dataset has a heart rate monitor and a temperature sensor, while mHealth 

has an ECG sensor and SWELL has a linear acceleration sensor. With respect to data collection, Pamap2 relies on 

wireless IMU’s, while mHealth uses wearables, and SWELL uses smartphones to collect the data. All activities in a 

particular dataset are conducted for approximately the same amount of time and are represented evenly in the data sets. 

Therefore, data imbalance does not constitute an issue. When data size is considered, Pampap2 dataset is the largest 

dataset with a 519,185-record size, while SWELL stands second with a 189,000-record size, and MHealth being the 

smallest with 102,959 record size. 

Dataset Sensors Sensor 

Position 

Activities performed Dataset description Sampling 

Frequency 
Pamap2 3 Colibri wireless IMUs 

(inertial measurement units) 

and BM-CS5SR (HR 
monitor) – Accelerometer, 

Gyroscope, magnetic sensor 

and temperature sensor. 

wrist, chest 

and side 

ankle. 

lying, sitting, standing, walking, 

running, cycling, Nordic walking, 

watching TV, computer work, car 
driving, ascending stairs, descending 

stairs, vacuum cleaning, ironing, 

folding laundry, house cleaning, 
playing soccer and rope jumping. 

9 subjects (1 female and 8 

male) aged 27.22 (+-) 3.31 

years performed the 12 
mandatory activities and 6 

optional activities for 2-3 

minutes. 

100 

samples/sec 

Mhealth accelerometer, a gyroscope, 

a magnetometer and ECG 
(Shimmer2 [BUR10] 

wearable sensors). 

chest, right 

wrist and 
left ankle 

L1: Standing still (1 min), L2: Sitting 

and relaxing (1 min), L3: Lying down 
(1 min), L4: Walking (1 min), L5: 

Climbing stairs (1 min), L6: Waist 

bends forward (20x), L7: Frontal 
elevation of arms (20x), L8: Knees 

bending (crouching) (20x), L9: 

Cycling (1 min), L10: Jogging (1 min), 
L11: Running (1 min), L12: Jump 

front & back (20x) 

10 volunteers of diverse 

profile performed 12 
physical activities for about 

1 min 

50 

samples/sec 

SWELL accelerometer, a gyroscope, 
a magnetometer, and a 

linear acceleration sensor 

(Samsung Galaxy SII 
(i9100) smartphone). 

upper arm, 
wrist, two 

pockets, 

and belt 
position 

walking, sitting, standing, jogging, 
biking, walking upstairs and walking 

downstairs 

10 participants performed 7 
activities for 3-4 minutes. 

All are male with ages 25-

30. 

50 
samples/sec 

Table 1. Dataset Characteristics 

3.2 Analysis 

     We compared different ML techniques using a number of HAR datasets (Pamap2, mHealth and SWELL) across 

various ML performance metrics. The ML techniques are Naïve Bayes, Support Vector Machine (SVM) with linear 

kernel, K-Nearest Neighbor (KNN), Logistic Regression, Stochastic Gradient Descent (SGD), Decision Tree, Decision 

Tree with entropy, Random Forest, Gradient Boosting Decision Tree (XGBoost), and NGBoost algorithm. Although, 

deep learning techniques such as neural network based algorithms are attracting popularity over the recent years, they 

tend to over fit  in the case of HAR data (Jobanputra et al. 2019). Moreover, the runtime of each dataset over various ML 

techniques is already high when run on Python Jupyter Notebook using eight-generation intel i7 processor considering 

the data is not extensively preprocessed, therefore, applying neural network-based techniques on these large HAR 

datasets would significantly increase runtime. Considering these circumstances, neural network techniques are not 

implemented in this research. Although accuracy is the most popular ML performance metric in HAR (Li et al. 2018), 

we utilized additional metrics such as precision, recall, F1 score, support and runtime to facilitate an in-depth analysis. 

Table 2 shows the description of ML metrics employed for evaluating the ML performance. 

     All the three datasets are minimally preprocessed by addressing the missing values and excluding the data during the 

transient stage (transition from one activity to another) based on timestamp and standardizing the format of the data such 
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that it would be easier to implement the ML techniques and interpret the results obtained from the analysis. Specifically, 

the data is standardized in a manner such that each row represents the sample values for each sensor for a specific 

sampling time, and each column represents a sensor except for timestamp, subject ID, and classification activity. After 

standardizing the format of each dataset with minimal preprocessing, we split the data into training (70%) and test data 

(30%) for each dataset. Once all the datasets are split into training and test data, we train (including hyperparameters 

tuning) of the various ML techniques using each of the datasets. Then, we evaluate each ML technique with the 

considered performance metrics on each dataset. 

ML 

Metrics 

Accuracy Precision Recall F1 score Predicting Run 

Time 
Definition The ratio of number of 

correct predictions to the 

total number of predictions. 

The ratio of number of 

correctly predicted 

positive values to the total 
predicted positive values. 

The ratio of correctly 

predicted positive values 

to the total number of 
positive values. 

Harmonic mean of 

precision and recall. 

Time taken for target 

classification using test 

data. 

Formula (TP+TN)/(TP+TN+FP+FN) TP/(TP+FP) TP/(TP+FN) 2*(Precision*Recall)/

(Precision+Recall) 

- 

Table 2. Description of ML metrics 

Where: 

• True Positive (TP) - Number of correctly predicted positive values.

• True Negative (TN) - Number of correctly predicted negative values.

• False Positive (FP) – Number of predictions that interpret negative values as positive values.

• False Negative (FN) – Number of predictions that interpret positive values as negatives.

     To investigate the potential tradeoff between classification performance and prediction runtime, we identify the Pareto 

efficient ML techniques for each of the datasets. Pareto efficiency is a concept where no individual criterion can be 

declared better without a sacrifice in one of the other criterion (Bokrantz and Fredriksson 2017). Accuracy is used as the 

metric representing classification performance, while prediction run time is measured in seconds.  

3.2.1 Classification performance by activity 

     To get a better understanding of the performance of the various ML techniques using the various datasets, we 

considered three cases as follows. 

     Individual activities: In this case, the target variable is represented as a categorical variable where each category 

representing one activity such as sitting, standing, running, and lying for each dataset. This type of grouping is very 

popular in comparative analysis for understanding each activity and the respective effect of ML technique. It provides 

for the most fidelity as all activities are accounted for. However, it allows for the number of activities (classes) to vary 

among the three datasets which may compound the comparative analysis of the performance of various ML techniques. 

     Grouped activities: To address the aforementioned issue and considering that differentiating between sitting and 

standing, and between walking fast and running, and similar differentiation can be very difficult to obtain (Gjoreski et 

al. 2014), we conducted another set of experiments where all the activities in each dataset are divided into two categories 

namely locomotive activities and stationary activities. Activities where the user is staying idle with no physical 

movement such as sitting, standing, and lying are considered stationary activities. All other activities which require the 

user to perform a physical movement such as, but not limited to walking, running, jumping, climbing stairs and similar 

activities are categorized as locomotive activities. It is assumed that since all the locomotive activities share a similarity 

that the sensor movement is dynamic and similarly, stationary activities share a similarity that all the sensor movement 

would be idle, it should alleviate the problem of differentiating similar activities. This categorization should guide us 

towards understanding more towards the type of activity and how it is going to affect the ML techniques and their 

performance, respectively.  

     Common activities: Another possibility for standardizing the activities across datasets while maintaining as much 

fidelity as possible (in terms of the number of activities/classes) considered, we conducted an additional experiment 

where we included the activities that are common in all three datasets. The common activities in all the datasets are 

walking, sitting, standing, running, cycling, and climbing stairs. 
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4. Results

4.1 Classification of individual activities 

     Table 3 depicts the performance of the various ML techniques on the three data sets. With respect to accuracy, the 

performance of ML techniques irrespective of the datasets in the order of best performance are XGboost, Random Forest, 

KNN, SVM, Decision Tree with entropy, Decision Tree, NGBoost, Logistic Regression, Naïve Bayes, and SGD. There 

are three exceptions to this observation, Naïve Bayes technique performed better in the case of SWELL when compared 

to Logistic Regression, SGD performed better in the case of Mhealth when compared to Naïve Bayes technique, and 

Random Forest, KNN, and SVM performed better than XGboost in the case of mHealth. 

     With respect to precision, recall, and F1 Score, the performance of ML techniques irrespective of the datasets in the 

order of best performance are KNN, SVM, Random Forest, XGboost, Decision Tree with entropy, Decision Tree, 

Logistic Regression, Naïve Bayes, and SGD. There are two exceptions to this observation, Naïve Bayes technique 

performed better than Logistic Regression in the case of SWELL and SGD performed better than Naïve Bayes in the 

case of the mHealth dataset. 

     The performance of ML techniques irrespective of the datasets in the order of least runtime, Logistic Regression, 

SGD, Decision Tree with entropy, Decision Tree, Random Forest, Naïve Bayes, XGboost, SVM, and KNN. There is one 

exception to this observation, XGboost has lower run-time when compared to Naïve Bayes in the case of Pamap2 dataset. 

Naïve 

Bayes 

SVM KNN SGD Logistic 

Reg. 

DT DT with 

Entropy 

RF XGBoost NGBoost 

Accuracy Pamap2 0.901 0.999 0.999 0.9 0.92 0.999 0.999 0.999 0.999 0.936 

SWELL 0.879 0.996 0.998 0.847 0.855 0.975 0.977 0.995 0.999 0.881 

MHealth 0.521 0.965 0.991 0.629 0.738 0.911 0.918 0.939 0.934 0.875 

Precision Pamap2 0.91 1 1 0.9 0.92 1 1 1 1 0.93 

SWELL 0.88 1 1 0.85 0.85 0.98 0.98 1 1 0.88 

MHealth 0.52 0.97 0.99 0.63 0.72 0.91 0.92 0.94 0.94 0.87 

Recall Pamap2 0.90 1 1 0.9 0.92 1 1 1 1 0.93 

SWELL 0.88 1 1 0.85 0.86 0.98 0.98 1 1 0.87 

MHealth 0.52 0.97 0.99 0.63 0.74 0.91 0.92 0.94 0.93 0.87 

F1 Score Pamap2 0.90 1 1 0.9 0.92 1 1 1 1 0.93 

SWELL 0.88 1 1 0.85 0.85 0.98 0.98 1 1 0.88 

MHealth 0.55 0.97 0.99 0.62 0.65 0.91 0.92 0.94 0.93 0.87 

Predicting 

Run-Time 
(s) 

Pamap2 7.281 639.2 12,860 0.145 0.15 0.182 0.149 1.518 6.923 401.765 

SWELL 1.026 303.271 6,527 0.062 0.046 0.087 0.072 0.599 2.638 281.942 

MHealth 0.398 232.583 488.51 0.021 0.02 0.03 0.024 0.262 2.625 122.888 

Table 3. Performance metrics of ML techniques for individual activities 

4.2 Classification of grouped activities 

As shown in Table 4, all ML techniques performs better using the Pamap2 dataset on all performance metrics except the 

runtime when compared to the other two datasets. When we consider accuracy, precision, recall and F1 score, the general 

trend that is followed by the ML techniques irrespective of the datasets is, Logistic Regression, SGD, Naïve Bayes, 

NGBoost Decision Tree, Decision Tree with entropy, SVM, KNN, Random Forest, and XGboost. There is one exception 

where Logistic Regression performed better than Naïve Bayes in the case of Pampap2 dataset. 

     When prediction run-time is considered, the general trend followed by the ML techniques irrespective of the dataset 

in the order of the shortest to longest runtime is Logistic Regression, SGD, Decision Tree with entropy, Decision Tree, 

Random Forest, Naïve Bayes, XGboost, SVM, NGBoost, and KNN. As expected, (with only two classes), the 

performance metrics of ML techniques for grouped activities is better when compared to the individual activities. 
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Naïve 

Bayes 

SVM KNN SGD Logistic 

Reg. 

DT DT with 

Entropy 

RF XGBoost NGBoost 

Accuracy Pamap2 0.966 1 0.999 0.999 0.999 1 1 1 1 1 

SWELL 0.99 0.999 0.999 0.97 0.97 0.998 0.998 0.999 0.999 0.998 

MHealth 0.989 0.991 0.999 0.834 0.814 0.998 0.998 0.999 0.999 0.996 

Precision Pamap2 0.97 1 1 1 1 1 1 1 1 1 

SWELL 0.99 1 1 0.97 0.97 1 1 1 1 0.99 

MHealth 0.99 0.99 1 0.83 0.80 1 1 1 1 0.99 

Recall Pamap2 0.97 1 1 1 1 1 1 1 1 1 

SWELL 0.99 1 1 0.97 0.97 1 1 1 1 0.99 

MHealth 0.99 0.99 1 0.83 0.81 1 1 1 1 0.99 

F1 Score Pamap2 0.97 1 1 1 1 1 1 1 1 1 

SWELL 0.99 1 1 0.97 0.97 1 1 1 1 0.99 

MHealth 0.99 0.99 1 0.82 0.80 1 1 1 1 0.99 

Predicting 

Run-Time 

(s) 

Pamap2 0.712 21.831 12965 0.09 0.053 0.102 0.108 0.596 1.058 118.688 

SWELL 0.343 11.216 6505.1

6 

0.025 0.029 0.048 0.044 0.265 0.57 46.751 

MHealth 0.069 52.799 486.39
7 

0.006 0.008 0.014 0.012 0.109 0.217 10.065 

Table 4. Performance metrics of ML techniques for grouped activities 

4.3 Classification of common activities 

     As shown in Table 5, all ML techniques perform better using the Pamap2 dataset on all performance metrics except 

the runtime when compared to the other two datasets. When we consider accuracy, precision, recall and F1 score, the 

general trend that is followed by the ML techniques irrespective of the datasets is, SGD, Logistic Regression, Naïve 

Bayes, NGBoost Decision Tree, Decision Tree with entropy, SVM, KNN, Random Forest, and XGboost. There is one 

exception where Logistic Regression performed better than Naïve Bayes in the case of Pampap2 dataset. 

     When prediction run-time is considered, the general trend followed by the ML techniques irrespective of the dataset 

in the order of the shortest-longest runtime is Logistic Regression, SGD, Decision Tree with entropy, Decision Tree, 

Random Forest, Naïve Bayes, XGboost, SVM, NGBoost, and KNN. The performance metrics of ML techniques for 

common activities are better when compared to the individual activities and slightly lower when compared with the 

grouped activities. 

Naïve 

Bayes 

SVM KNN SGD Logistic 

Reg. 

DT DT with 

Entropy 

RF XGBoost NGBoost 

Accuracy Pamap2 0.945 0.999 0.999 0.984 0.987 0.999 0.999 1 1 0.999 

SWELL 0.939 0.998 0.999 0.924 0.931 0.991 0.993 0.998 0.999 0.964 

MHealth 0.931 0.99 0.998 0.789 0.829 0.988 0.99 0.999 0.999 0.959 

Precision Pamap2 0.95 1 1 0.98 0.98 1 1 1 1 0.99 

SWELL 0.94 1 1 0.92 0.93 0.99 0.99 1 1 0.96 

MHealth 0.93 0.99 1 0.78 0.82 0.99 0.99 1 1 0.95 

Recall Pamap2 0.95 1 1 0.98 0.99 1 1 1 1 0.99 

SWELL 0.94 1 1 0.92 0.93 0.99 0.99 1 1 0.96 

MHealth 0.93 0.99 1 0.79 0.83 0.99 0.99 1 1 0.95 

F1 Score Pamap2 0.95 1 1 0.98 0.98 1 1 1 1 0.99 

SWELL 0.94 1 1 0.92 0.93 0.99 0.99 1 1 0.96 

MHealth 0.93 0.99 1 0.78 0.82 0.99 0.99 1 1 0.95 

Predicting 

Run-Time 

(s) 

Pamap2 1.374 50.455 3603.94

3 

0.076 0.074 0.082 0.078 0.661 1.987 305.698 

SWELL 0.959 120.28 4645.31
6 

0.05 0.046 0.077 0.066 0.514 2.221 203.605 

MHealth 0.121 31.922 152.443 0.01 0.008 0.013 0.013 0.109 0.557 28.638 

Table 5. Performance metrics of ML techniques for common activities 
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5. Discussion

     When Pamap2 dataset is employed, all the ML techniques performed to their best for all possible groupings of 

activities. The relatively large size of the data resulting from the higher sampling frequency, and the additional sensors 

(temperature sensor and heart rate monitor) utilized in the dataset, positively affected ML performance. This leads us to 

conclude that the overall improvement of ML performance metrics tends to be associated with the number of sensors and 

higher sampling rate employed to collect the HAR data. Generally, tree-based algorithms such as Random Forest, 

NGBoost, and XGboost outperformed Naïve Bayes, SGD and Logistic Regression (with an exception of KNN and SVM, 

as their runtime is very high for real time usage) in terms of ML performance metrics thereby attesting to the claims 

made by other studies that Tree based techniques perform better than other techniques in the field of HAR (Sánchez and 

Skeie 2018).  

     When performance metrics of ML techniques for individual activities and common activities are compared with 

grouped activities, all the ML techniques performed better when activities are grouped as locomotive or stationary 

activities. This supports the assertion that it is particularly challenging to differentiate similar activities among a particular 

group (stationary and locomotive). Although, this observation is expected, this comparison provides an additional 

dimension for comparing ML techniques behavior.  

     Although, previous studies achieved accuracies up to 0.97 and F1 score of 0.84 with just the wrist position using deep 

learning techniques (Baldominos et al. 2019), this study obtained much higher accuracies and F1 scores using less 

complex ML techniques compared to neural network based techniques. However, in every dataset utilized, a combination 

of three or more sensor positions were employed. Therefore, evaluating the performance for each sensor position 

separately would give more insights but drastically increases the complexity of the analysis given the additional 

consideration for the number and location of sensors. This can be further explored in the future research. 

     When run-time is analyzed, it is expected that the dataset having more data (both in terms of features as well as data 

collected) would take more time to run a particular ML technique. Accordingly, in all considered scenarios, the predicting 

run time for any ML technique is highest when Pamap2 dataset is employed, followed by SWELL, and mHealth. Usually, 

all the ML techniques take more time for training and takes less time for predicting. Naïve Bayes technique on the other 

hand, took the least time for training the model but took a relatively long time for prediction using the test data. Naïve 

Bayes model size (with respect to the number of model parameters to be estimated) is relatively small compared to the 

other ML techniques considered. Moreover, depending on the conditional independence assumption being true, the 

model converges very fast resulting in a low training run time and less data being required for training compared to the 

other datasets considered (Mark 2015). If we consider any real time application that requires recognition of human 

activity, the main concern for designing the application would be minimizing prediction run time while maintaining 

acceptable classification performance. This puts Naïve Bayes ML technique at a disadvantage. Further, Logistic 

Regression tend to have the shortest run time while KNN has the longest run time in most of the cases considered.  

     Considering the tradeoff between classification performance represented using accuracy we find that DT with Entropy 

appears on the pareto efficient frontier regardless of the data set. DT with entropy is also the sole ML technique that is 

Pareto efficient for the Pamap2 dataset. Random Forest and Logistic Regression are Pareto efficient for SWELL and 

MHealth, while XGBoost is Pareto efficient for SWELL only. The prevalence of tree-based ML techniques such as DT 

with entropy, Random Forest, and to some extent XG Boost further supports prior research tree based techniques perform 

better than other techniques in the field of HAR (Sánchez and Skeie 2018). Although, KNN has a relatively long run 

time, it exhibits the best classification performance irrespective of the HAR dataset. Interestingly, KNN and SVM are in 

effect Pareto efficient for MHealth. However, run time for these two techniques is in the order of four magnitude larger 

than the run time for the other techniques rendering a steep tradeoff between run time and classification performance. 

This, considering very high run time of SVM and KNN, neither of these techniques may be suitable for real time 

applications. 

     If an application is more interested in the accuracy, low on budget for additional sensors such as heart rate monitor, 

then XGBoost would be an ideal solution with some run time tradeoff compared to Random Forest. Similarly, if an 

application is more interested in short run time, then Decision Tree with entropy would be an ideal solution with a small 

tradeoff with the accuracy. But in most of the other cases, DT with Entropy is the optimal performer for any combination 

of weighted performance metrics selected. There can always be some exceptions such as in an application with very 

limited data, then KNN or XGBoost might be a better fit depending on the size of data. 
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     In essence, depending on the requirements of the HAR application and data amount, we can choose the sensor types 

(Shoaib et al. 2014), sensor positions (Baldominos et al. 2019), ML techniques (Dohnálek et al. 2014), sampling 

frequency (Wang et al. 2019), and similar characteristics based on the insights provided in this research. The key insights 

pointed out in this study: 

• It is relatively difficult to differentiate similar activities among a particular group (stationary and locomotive).

• High sampling frequency improves the ML performance metrics (Accuracy, precision, recall, F1 score, and support),

however, it will take a toll on the run-time.

• DT with Entropy stands out to be the optimal performer in most cases of the HAR applications.

• Ensemble techniques outperforms traditional ML techniques in terms of ML performance metrics except run time

for HAR data.

• Naïve Bayes technique is efficient when there are more activities involved.

• Naive Bayes technique takes the least time for training the data and build the model but takes a heavy toll in time

taken for predicting the test data.

6. Conclusion

     In this study, the performance of various ML techniques used for HAR are evaluated using ML performance metrics 

such as accuracy, precision, recall, F1 score, and run time on multiple HAR datasets. We investigated the relationship 

of different HAR dataset characteristics to the performance of various ML techniques. Examples include the amount of 

the data collected, sampling frequency, sensor types, type of activity performed, number of activities performed, and 

sensor positions. Although, DT with Entropy performed best on most types of HAR data considering its performance 

metrics across all the datasets, there is no single silver bullet for HAR data. The findings highlight the importance to 

tailor the selection of ML technique based on the specific HAR requirements and the characteristics of the associated 

HAR dataset. Future research can analyze the impact of sensor types and positions individually on ML performance.  

Another potential future research avenue of this study is extending the portfolio of ML techniques to include an 

investigation of deep learning and (more importantly in the context of wearables, light-weight architectures). Future 

research could also explore the effect of various pre-processing to further explore the Pareto efficient frontier between 

run-time performance and classification performance. 
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